Zwei Kreise < Deutsche MO < Wettbewerbe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:09 Sa 07.07.2007 | Autor: | Theseus |
Aufgabe | Auf der Sehne [mm] \overline{AB} [/mm] des Kreises $k$ mit dem Mittelpunkt $M$ liege ein von $A$ und $B$ verschiedener Punkt $Q$. Durch die Punkte $A$, $M$ und $Q$ gehe der Kreis [mm] $k_1$, [/mm] der den Kreis $k$ in den Punkten $A$ und $C$ schneide. Man beweise, dass die Strecken [mm] \overline{QB} [/mm] und [mm] \overline{QC} [/mm] gleich lang sind. |
Hallo,
das war eine Aufgabe der 44. Mathe Olympiade (1. Stufe); da ich was Geometrie angeht ein ziemlicher Neuling bin, dies aber gerne ändern möchte, habe ich mich an dieser Aufgabe versucht.
Im Grunde geht es ja darum nachzuweisen, dass das Dreieck BCQ gleichschenklig ist, oder? Ich habe das Gefühl, dass hier der Sehnen-Tangentenwinkel-Satz angewendet werden muss, ein genauer Ansatz fehlt mir aber.
Hat jemand einen Tipp?
PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:23 So 08.07.2007 | Autor: | Fulla |
Hi Theseus!
Ja, du hast recht. Es reicht zu zeigen, dass das Dreieck [mm] $\triangle [/mm] CBQ$ gleichschenklig ist.
Der große Kreis $k$ ist der Fasskreisbogen über der Strecke [mm] \overline{AC} [/mm] zum Winkel [mm] $\alpha$. [/mm] Das heißt, der Winkel [mm] $\sphericalangle ABC=\sphericalangle QBC=\alpha$.
[/mm]
Außerdem ist der Winkel [mm] $\sphericalangle AMC=2\alpha$ [/mm]
Andererseits ist der Kreis [mm] $k_1$ [/mm] auch ein Fasskreisbogen über [mm] \overline{AC}. [/mm] Da der Punt M auf [mm] $k_1$ [/mm] liegt und [mm] $\sphericalangle AMC=2\alpha$ [/mm] folgt, dass der Winkel zu diesem Fasskreisbogen [mm] $2\alpha$ [/mm] ist.
Daraus folgt, dass [mm] $\sphericalangle AQC=2\alpha$, [/mm] da auch Q auf dem Kreis [mm] $k_1$ [/mm] liegt.
Der Winkel [mm] $\sphericalangle [/mm] CQB$ ist dann [mm] $180°-2\alpha$.
[/mm]
Aus der Innenwinkelsumme des Dreiecks [mm] $\triangle [/mm] CBQ$ ergibt sich dann:
[mm] $\sphericalangle BCQ=180°-(180°-2\alpha)-\alpha)=\alpha$
[/mm]
Das heißt, das Dreieck [mm] $\triangle [/mm] CBQ$ ist gleichschenklig [mm] (Basiswinkel$=\alpha$), [/mm] also sind [mm] \overline{QC} [/mm] und [mm] \overline{QB} [/mm] gleich lang.
Lieben Gruß,
Fulla
|
|
|
|