www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Zusammenhang rg und n
Zusammenhang rg und n < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zusammenhang rg und n: Idee
Status: (Frage) beantwortet Status 
Datum: 13:32 So 12.02.2012
Autor: KaJaTa

Aufgabe
Gegeben sei eine m,n Matrix.
Welcher Zusammenhang besteht zwichen rg (A) und n.

Hallo,

ich weiß:

rg A = n --> eindeutig lösbar
rg A < n --> unterbestimmt: unendlich viele Lösungen

Bin mir aber nicht sicher ob das hier auch gilt:
rg (A) > --> überbestimmt (kann eine Lösunge haben muss aber nicht)

Ich habe folgenden Matrix gegeben:

[mm] \pmat{ 1 & 4 \\ 2 & 5 \\ 3 & 6 } [/mm]

Und soll nun sagen, ob ich das Gleichungssystem Ax=b für jede rechte Seite b lösen kann.

Wie gesagt: Das System ist überbestimmt. D.h. es hat keine genau Lösung oder nur eine angenäherte (Methode der kleinsten Quadrate).
Also mein Problem ist, dass ich nicht weiß wie ich argumenterien soll.
Kann ich das irgendwie über die Unabhängigkkeit der Spaltenvektoren zeigen?

Danke

Ich hoffe, dass ist alles nicht zu wirr geschrieben ... :)



        
Bezug
Zusammenhang rg und n: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 So 12.02.2012
Autor: wieschoo


> Gegeben sei eine m,n Matrix.
> Welcher Zusammenhang besteht zwichen rg (A) und n.
>  Hallo,
>
> ich weiß:
>  
> rg A = n --> eindeutig lösbar
>  rg A < n --> unterbestimmt: unendlich viele Lösungen

>  
> Bin mir aber nicht sicher ob das hier auch gilt:
>  rg (A) > --> überbestimmt (kann eine Lösunge haben muss

> aber nicht)

Es geht nie rg(A)>n oder rg(A)>m. Immer rg(A)<= min (n,m)

>  
> Ich habe folgenden Matrix gegeben:
>  
> [mm]\pmat{ 1 & 4 \\ 2 & 5 \\ 3 & 6 }[/mm]
>  
> Und soll nun sagen, ob ich das Gleichungssystem Ax=b für
> jede rechte Seite b lösen kann.

Wenn das gilt, dann muss das bewiesen werden
Wenn das nicht gilt, dann genügt ein Gegenbeispiel, was sich leicht findet.

>
> Wie gesagt: Das System ist überbestimmt. D.h. es hat keine
> genau Lösung oder nur eine angenäherte (Methode der
> kleinsten Quadrate).
> Also mein Problem ist, dass ich nicht weiß wie ich
> argumenterien soll.
> Kann ich das irgendwie über die Unabhängigkkeit der
> Spaltenvektoren zeigen?

Gegenb*****

>  
> Danke
>  
> Ich hoffe, dass ist alles nicht zu wirr geschrieben ... :)
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]