www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Zeigen, dass f in x diffb. ist
Zeigen, dass f in x diffb. ist < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen, dass f in x diffb. ist: Ansatzfindung
Status: (Frage) beantwortet Status 
Datum: 09:03 Sa 17.01.2015
Autor: qwertz235

Aufgabe
Es sei [mm] x_{0}\in [/mm] (a,b) und [mm] f:[a,b]\to \mathbb{R} [/mm] stetig und differenzierbar auf [mm] [a,b]\backslash \{x_{0}\}. [/mm] Weiterhin existiere der Grenzwert [mm] \limes_{x\rightarrow\x_{0}} [/mm] f'(x) =: y. Zeigen Sie, dass dann f auch in [mm] x_{0} [/mm] differenzierbar ist mit der Ableitung [mm] f'(x_{0}) [/mm] = y. Kann auf die Stetigkeit im Punkt [mm] x_{0} [/mm] verzichtet werden?

Guten Morgen,
ich habe leider keinen Ansatz zu dieser Aufgabe. Insbesondere verstehe ich auch den Grenzwert [mm] \limes_{x\rightarrow\x_{0}} [/mm] f'(x) =: y nicht. Wenn ich für [mm] f'(x_{0} [/mm] den Differentialquotienten einsetzen würde, dann würde ich ja einen doppelten Grenzwert erhalten. Ich würde mich über Hilfe sehr freuen.

Viele Grüße

        
Bezug
Zeigen, dass f in x diffb. ist: Antwort
Status: (Antwort) fertig Status 
Datum: 09:28 Sa 17.01.2015
Autor: fred97


> Es sei [mm]x_{0}\in[/mm] (a,b) und [mm]f:[a,b]\to \mathbb{R}[/mm] stetig und
> differenzierbar auf [mm][a,b]\backslash \{x_{0}\}.[/mm] Weiterhin
> existiere der Grenzwert [mm]\limes_{x\rightarrow\x_{0}}[/mm] f'(x)
> =: y. Zeigen Sie, dass dann f auch in [mm]x_{0}[/mm] differenzierbar
> ist mit der Ableitung [mm]f'(x_{0})[/mm] = y. Kann auf die
> Stetigkeit im Punkt [mm]x_{0}[/mm] verzichtet werden?
>  Guten Morgen,
> ich habe leider keinen Ansatz zu dieser Aufgabe.
> Insbesondere verstehe ich auch den Grenzwert
> [mm]\limes_{x\rightarrow x_{0}}[/mm] f'(x) =: y nicht.

In jedem x [mm] \in [/mm]  $ [mm] [a,b]\backslash \{x_{0}\} [/mm] $ existiert die Ableitung f'(x).

Vorausgesetzt ist, dass die Funktion f': $ [mm] [a,b]\backslash \{x_{0}\} \to \IR [/mm] $ einen Grenzwert für x [mm] \to x_0 [/mm] hat.




> Wenn ich für
> [mm]f'(x_{0}[/mm] den Differentialquotienten einsetzen würde, dann
> würde ich ja einen doppelten Grenzwert erhalten. Ich
> würde mich über Hilfe sehr freuen.


Für x [mm] \in [/mm]  $ [mm] [a,b]\backslash \{x_{0}\} [/mm] $ berachte den Quotienten

  [mm] \bruch{f(x)-f(x_0)}{x-x_0}. [/mm]

Stelle diesen Quotienten mit Hilfe des Mittelwertsatzes dar.

FRED

>  
> Viele Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]