www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Prädikatenlogik" - Zeigen, dass eine Struktur sta
Zeigen, dass eine Struktur sta < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen, dass eine Struktur sta: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:31 Mo 24.09.2012
Autor: Avinu

Aufgabe
Eine [mm] $\tau$-Struktur $\mathcal{A}$ [/mm] heißt starr, wenn sie nur den trivialen Automorphismus besitzt, d.h. wenn für alle Automorphismen [mm] $\pi [/mm] : [mm] \mathcal{A} \to \mathcal{A}$ [/mm] gilt, dass [mm] $\pi(a) [/mm] = a$ für alle $a [mm] \in [/mm] A$.

Beweisen oder widerlegen Sie, dass die folgenden Strukturen starr sind.

[mm] $(\IN, [/mm] <)$
[mm] $(\IQ, [/mm] +, *)$
...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen,

grundsätzlich ist die Aufgabenstellung klar und für einfache Beispiele komme ich damit auch zurecht. Z.B. sehe ich ein, dass $ [mm] (\IN, [/mm] <) $ starr ist und denke das ich das auch formal korrekt aufschreiben kann. Auch ist klar, wie ich zeige, dass z.B. [mm] $(\IZ, [/mm] +)$ nicht starr ist.
Aber wie gehe ich grundsätzlich vor, wenn ich zeigen will, dass die Identitätsabbildung der einzige Automorphismus ist?

Schonmal vielen Dank für alle Hinweise.

Grüße,
Avinu

        
Bezug
Zeigen, dass eine Struktur sta: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 Mo 24.09.2012
Autor: felixf

Moin!

>  Aber wie gehe ich grundsätzlich vor, wenn ich zeigen
> will, dass die Identitätsabbildung der einzige
> Automorphismus ist?

Normalerweise nimmt man sich irgendeinen Automorphismus und zeigt mit dessen Eigenschaften, dass er bereits die Identitaet ist.

Bei [mm] $(\IQ, [/mm] +, [mm] \cdot)$ [/mm] kannst du z.B. erstmal [mm] $\varphi(z) [/mm] = z$ fuer alle $z [mm] \in \IZ$ [/mm] zeigen, und dann [mm] $\varphi(1/z) [/mm] = 1/z$ fuer $z [mm] \in \IZ \setminus \{ 0 \}$, [/mm] und damit schliesslich [mm] $\varphi(q) [/mm] = q$ fuer alle $q [mm] \in \IQ$. [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]