www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Zeige Standardnormalverteilung
Zeige Standardnormalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeige Standardnormalverteilung: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 16:50 So 05.05.2013
Autor: Steffen2361

Aufgabe
Hi,

Ich hätte folgende Frage an euch:

Seien [mm] −\infty \le [/mm] a < b [mm] \le \infty. [/mm] Zeige, dass:

[mm] \int_{\mu+a\sigma}^{\mu+b\sigma} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{t-\mu}{\sigma}\right)^2} \mathrm [/mm] dt  =  [mm] \int_{a}^{b} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2} \left(t\right)^2} \mathrm [/mm] dt

Danke


Ich weiß leider nicht wie ich da weiterkommen soll. Links steht doch die allgemeine Normalverteilung und rechts die Standartisierte Normalverteilung.

Sprich nehme ich für den Erwatungswert =0 und die Varianz = 1 -> [mm] N(\mu, \sigma) [/mm] =  N(0,1)

Nun setze ich dies in die Linke Seite der Gleichung ein und erhalte die Rechte Seite

Könnt ihr mir bitte hefen, stehe echt auf der Leitung

mfg
steffen

        
Bezug
Zeige Standardnormalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 So 05.05.2013
Autor: MathePower

Hallo Steffen2361,

> Hi,
>  
> Ich hätte folgende Frage an euch:
>  
> Seien [mm]−\infty \le[/mm] a < b [mm]\le \infty.[/mm] Zeige, dass:
>  
> [mm]\int_{\mu+a\sigma}^{\mu+b\sigma} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{t-\mu}{\sigma}\right)^2} \mathrm[/mm]
> dt  =  [mm]\int_{a}^{b} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2} \left(t\right)^2} \mathrm[/mm]
> dt
>  
> Danke
>  Ich weiß leider nicht wie ich da weiterkommen soll. Links
> steht doch die allgemeine Normalverteilung und rechts die
> Standartisierte Normalverteilung.
>
> Sprich nehme ich für den Erwatungswert =0 und die Varianz
> = 1 -> [mm]N(\mu, \sigma)[/mm] =  N(0,1)
>  
> Nun setze ich dies in die Linke Seite der Gleichung ein und
> erhalte die Rechte Seite
>  
> Könnt ihr mir bitte hefen, stehe echt auf der Leitung
>  


Um die Gleichheit der beiden Integrale zu  zeigen,
ist eine Substitution auszuführen.


> mfg
>  steffen


Gruss
MathePower

Bezug
                
Bezug
Zeige Standardnormalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 So 05.05.2013
Autor: Steffen2361

Ach ok danke

Ich substituire mit

u= [mm] \frac{t-\mu}{\sigma} [/mm]

Komme dann auf

[mm] $\bruch{du}{dt} [/mm] = [mm] \bruch{1}{\sigma} \rightarrow [/mm] dt = du * [mm] \sigma$ [/mm]

Dies setze ich nun in mein Intragl ein

$ [mm] \int_{\phi(\mu+a\sigma)}^{\phi(\mu+b\sigma)} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2} \left(u\right)^2} [/mm] du * [mm] \sigma \mathrm [/mm] $

Nun streicht sich das Sigma weg und noch die Grenzen ausrechnen, sprich:

[mm] \phi(\mu+a\sigma) [/mm] = [mm] \bruch{\mu+a\sigma - \mu}{\sigma} [/mm] = a

[mm] \phi(\mu+b\sigma) [/mm] = [mm] \bruch{\mu+b\sigma - \mu}{\sigma} [/mm] = b

Ergibt:

$ [mm] \int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \left(u\right)^2} [/mm] du  [mm] \mathrm [/mm] $

Hast du das so gemeint?

Danke

Bezug
                        
Bezug
Zeige Standardnormalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 So 05.05.2013
Autor: MathePower

Hallo Steffen2361,

> Ach ok danke
>
> Ich substituire mit
>
> u= [mm]\frac{t-\mu}{\sigma}[/mm]
>  
> Komme dann auf
>
> [mm]\bruch{du}{dt} = \bruch{1}{\sigma} \rightarrow dt = du * \sigma[/mm]
>  
> Dies setze ich nun in mein Intragl ein
>  
> [mm]\int_{\phi(\mu+a\sigma)}^{\phi(\mu+b\sigma)} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2} \left(u\right)^2} du * \sigma \mathrm[/mm]
>
> Nun streicht sich das Sigma weg und noch die Grenzen
> ausrechnen, sprich:
>  
> [mm]\phi(\mu+a\sigma)[/mm] = [mm]\bruch{\mu+a\sigma - \mu}{\sigma}[/mm] = a
>  
> [mm]\phi(\mu+b\sigma)[/mm] = [mm]\bruch{\mu+b\sigma - \mu}{\sigma}[/mm] = b
>  
> Ergibt:
>  
> [mm]\int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \left(u\right)^2} du \mathrm[/mm]
>
> Hast du das so gemeint?
>  


Ja. [ok]


> Danke



Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]