Winkelgeschwindigkeit - Umstel < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:15 So 21.05.2006 | Autor: | Pedda |
Hallo,
ich habe eine Frage auf die ich auch nach intensivem Googlen keine Antwort bekommen habe. Die Eulerbeziehung mit [mm]\vec \omega[/mm] x [mm]\vec r[/mm] = [mm]\vec v[/mm] ist mir ja klar. Aber wie stellt man denn jetzt nach [mm]\vec v[/mm] um ? Auf Analysisebene ist mir das ja klar, aber vektoriell ist mir das Ganze noch ein Rätsel.
Gruß, Peter
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:56 So 21.05.2006 | Autor: | leduart |
Hallo Peter
> ich habe eine Frage auf die ich auch nach intensivem
> Googlen keine Antwort bekommen habe. Die Eulerbeziehung mit
> [mm]\vec \omega[/mm] x [mm]\vec r[/mm] = [mm]\vec v[/mm] ist mir ja klar. Aber wie
> stellt man denn jetzt nach [mm]\vec v[/mm] um ? Auf Analysisebene
> ist mir das ja klar, aber vektoriell ist mir das Ganze noch
> ein Rätsel.
Deine Frage kann wohl nicht meinen, dass du nach v umstellen willst, ich denk also mal du willst [mm] \omega. [/mm] Und mit einem v und einem r ist [mm] \omega [/mm] nicht eindeutig bestimmt, es sei denn du rechnest immer mit [mm] v,r,\omega [/mm] paarweise senkrecht. Drum versteh ich auch nicht, wie du das "auf Analysisebene" kannst.
Entweder versteh ich die Frage nicht, oder es gibt keine Antwort.
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:59 So 21.05.2006 | Autor: | Pedda |
Hallo,
ja ich meine Umstellen nach [mm]\vec \omega[/mm], sorry. Mit Analysisebene meine ich, d[mm]\phi[/mm]/dt. Wieso ist denn das ganze mit einem r und einem v nicht definiert, wenn es eine gleichförmige Bewegung ist ?
tschö, Peter
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:40 Mo 22.05.2006 | Autor: | leduart |
Hallo Pedda
Du hast nicht gesagt, dass es sich um ne gleichförmige Kreisbewegung handelt! dabei hast du einfach [mm] \vec{\omega}=1/|r|^{2}*(\vec{r} [/mm] x [mm] \vec{v})
[/mm]
Aber das gilt eben nicht allgemein, während die ursprüngliche Gleichung allgemeingültig ist und du bei gegebenem festen [mm] \vec{\omega}zu [/mm] jedem [mm] \vec{r} [/mm] die geschw. berechnen kannst.
Wenn du aber ne Vektorregel willst:
Es [mm] gilt:$\vec{a} \times (\vec{b} \times \vec{c}) =\vec{b}*(\vec{a}*\vec{c})-\vec{c}*(\vec{a}*\vec{b})$ [/mm] (Skalarprodukt in den Klammern rechts).
wenn du das auf [mm] \vec{v}=\vec{\omega} \times \vec{r} [/mm] anwendest , indem du die Gleichung von links miit [mm] \vec{r}\times [/mm] multiplizierst hast du :
[mm] $\vec{r} \times \vec{v} =\vec{r} \times (\vec{\omega} \times \vec{r})=\vec{\omega}*r^2 [/mm] - [mm] \vec{r}(\vec{r}*\vec{v})$ [/mm]
Wenn r senkrecht v wie bei der gleichförmigen Kreisbewegung ist [mm] $(\vec{r}*\vec{v})=0$ [/mm] und du hast das gewünschte Ergebnis, das du aber NUR für diesen Fall verwenden darfst, und nicht wie die ursprüngliche Gleichung in jeden Fall!
Gruss leduart
|
|
|
|