www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Wie Stammfunktion bilden?
Wie Stammfunktion bilden? < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wie Stammfunktion bilden?: Cauchy Hauptwert
Status: (Frage) beantwortet Status 
Datum: 10:20 So 03.04.2011
Autor: BarneyS

Aufgabe
Berechnen Sie den Cauchy-Hauptwert von
[mm]\integral_{-\infty}^{\infty}{3x^2e^{-x^2} dx}[/mm]
Ist das Integral konvergent?

Hallo,

erstmal zur Konvergenz. Da

[mm]\forall |x|\ge 2[/mm]    [mm]\bruch{3x^2}{e^{x^2}} \ < \bruch{1}{x^2}[/mm]

ist das Integral kovergent mit Majorante [mm] \bruch{1}{x^2}[/mm]

Meine Frage, wie komme ich auf die Stammfunktion?
1. Idee: $ [mm] x^2 [/mm] $ substituieren, klappt nicht.
2. Idee: Partielle Integration mit $ u = [mm] e^{-x^2} [/mm] $ und $ v' = [mm] 3x^2 [/mm] $, klappt auch nicht.
Andere sinnvolle Substitutionen oder u und v vertauschen klappt immo auch nicht. Wie komme ich weiter?
Vielen Dank!

        
Bezug
Wie Stammfunktion bilden?: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 So 03.04.2011
Autor: Blech

Hi,

> 2. Idee: Partielle Integration mit $ u = [mm] e^{-x^2} [/mm] $ und $ v' = [mm] 3x^2 [/mm] $, klappt auch nicht.
> Andere sinnvolle Substitutionen oder u und v vertauschen klappt immo auch nicht.

Doch.

Etwas ausführlicher: Wie könnte man denn einen Term mit [mm] $e^{-x^2}$ [/mm] wählen, der leicht integrierbar ist?

ciao
Stefan

Bezug
                
Bezug
Wie Stammfunktion bilden?: Wie geht's dann weiter?
Status: (Frage) beantwortet Status 
Datum: 12:33 So 03.04.2011
Autor: BarneyS


> Hi,
>  
> > 2. Idee: Partielle Integration mit [mm]u = e^{-x^2}[/mm] und [mm]v' = 3x^2 [/mm],
> klappt auch nicht.
>  > Andere sinnvolle Substitutionen oder u und v vertauschen

> klappt immo auch nicht.
>  
> Doch.
>  
> Etwas ausführlicher: Wie könnte man denn einen Term mit
> [mm]e^{-x^2}[/mm] wählen, der leicht integrierbar ist?
>  
> ciao
>  Stefan

Hey, danke, sau gute Idee :)

dann nehme ich $ v' = [mm] (-2x)e^{-x^2} [/mm] $ und bekomme

[mm] \integral_{}^{}{3x^2e^{-x^2} dx} = -\bruch{3}{2}\integral_{}^{}{x(-2x)e^{-x^2} dx} = xe^{-x^2} - \integral_{}^{}{e^{-x^2} dx}[/mm]

Doch jetzt komme ich wieder nicht weiter.
Partielle Integration geht nicht, da kein Produkt.
Substitution funzt auch nicht, da ich das x nicht rausbekomme:

[mm] u = -x^2[/mm]    [mm] \bruch{du}{dx} = -2x[/mm]    [mm] dx = \bruch{du}{-2x}[/mm]

Sorry, aber ich brauch noch einen Tipp...

Bezug
                        
Bezug
Wie Stammfunktion bilden?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 So 03.04.2011
Autor: Gonozal_IX

Huhu,

Blechs Antwort führt dich nur in die Irre:
Deine Funktion hat keine elementare Stammfunktion, sondern ist nur mithilfe des []gaußschen Fehlerintegrals zu beschreiben.
Eine Stammfunktion also, wie du es meinst, wirst du daher nicht finden.
Da hilft auch kein noch so guter Ansatz ;-)

> $ [mm] \integral_{}^{}{3x^2e^{-x^2} dx} [/mm] = [mm] -\bruch{3}{2}\integral_{}^{}{x(-2x)e^{-x^2} dx} [/mm] = [mm] xe^{-x^2} [/mm] - [mm] \integral_{}^{}{e^{-x^2} dx} [/mm] $

Der Ansatz ist gut, und jetzt weiter mit dem Fehlerintegral :-)

MFG;
Gono.

Bezug
                        
Bezug
Wie Stammfunktion bilden?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:00 So 03.04.2011
Autor: Blech

Hi,

> $ [mm] \integral_{}^{}{3x^2e^{-x^2} dx} [/mm] = [mm] -\bruch{3}{2}\integral_{}^{}{x(-2x)e^{-x^2} dx} [/mm] = [mm] xe^{-x^2} [/mm] - [mm] \integral_{}^{}{e^{-x^2} dx} [/mm] $

Da ist das [mm] $-\frac [/mm] 32$ verschwunden. =)



> [mm] \integral_{}^{}{e^{-x^2} dx} [/mm]

gibt's nicht, aber

[mm] $\integral_{-\infty}^{\infty}{e^{-x^2} dx} [/mm] = [mm] \sqrt{\pi}$ [/mm]

Die englische Wikipedia hat den schicken []Beweis. (schick, weil ein im 1-dim nicht lösbares Problem im 2-dim plötzlich funktioniert =).


ciao
Stefan


PS: Könnte irgendwer mal eine Möglichkeit einführen, an nicht erschienene Editierfenster zu kommen? Das Fenster timed aus und dann ist die Frage als reserviert markiert, aber es gibt keine Möglichkeit, sie tatsächlich zu beantworten. Wieso kann ich "ich will die Frage doch nicht beantworten" wählen, aber nicht "bitte, bitte, laß mich die besch...eidene Antwort schreiben"?

Bezug
                
Bezug
Wie Stammfunktion bilden?: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 12:47 So 03.04.2011
Autor: Gonozal_IX

Huhu,

dein "Doch" hätte ich mal gern ausführlich begründet.
Es gibt nämlich keine elementare Stammfunktion, da änder auch ein geschicktes Substituieren nichts.

MFG;
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]