Wert der funktion bei DNF? < Technische Inform. < Praktische Inform. < Hochschule < Informatik < Vorhilfe
|
Ich habe das folgende:
f(x)=0 [mm] \gdw [/mm] x [mm] \in [/mm] {0100,0101,0111,1000,1010}
Ich brauche Primimplikanten zu finden, aber dafuer brauche DNF dieser funktion
Ich weisst nicht, welchen wert hat die funktion bei DNF?? 0 oder 1??
Hier steht f(x)=0 - kann ich sofort die funktion als DNF schreiben??
z.B. 0100= [mm] \overline{x_{1}}*x_{2}*\overline{x_{3}}*\overline{x_{4}} [/mm] + usw
???????????????????????
|
|
|
|
Hallo!
> Ich habe das folgende:
> f(x)=0 [mm]\gdw[/mm] x [mm]\in[/mm] {0100,0101,0111,1000,1010}
> Ich brauche Primimplikanten zu finden, aber dafuer brauche
> DNF dieser funktion
> Ich weisst nicht, welchen wert hat die funktion bei DNF??
> 0 oder 1??
> Hier steht f(x)=0 - kann ich sofort die funktion als DNF
> schreiben??
> z.B. 0100=
> [mm]\overline{x_{1}}*x_{2}*\overline{x_{3}}*\overline{x_{4}}[/mm] +
> usw
> ???????????????????????
Also, ich denke, das ist fast richtig. Allerdings schreibt man doch bei DNF die Terme auf, für die die Funktion 1 wird, oder irre ich mich? Und wenn du das so schreibst, wie da oben, dann zählst du ja alle Terme auf, deren Funktionswert 0 ist. Du musst also genau alle anderen aufzählen.
Hilft dir das? Ansonsten gibst du vielleicht mal die exakte Fragestellung an - ich hätte auch evtl. nochmal Lust, die Primimplikanten zu finden, auch wenn ich gar nicht mehr genau weiß, wie das geht. Aber wenn du deine Lösung schickst, würde ich sie bestimmt angucken und ggf. korrigieren.
Viele Grüße
Bastiane
|
|
|
|
|
Ja, Bastiane, du hast Recht. Beid DNF ist der Wert der Funktion gleich 1, das heisst, um die Primimplikanten hier zu berechnen, muss man alle andere Punkte (11 Punkte) benutzen und daraus DNF ableiten.
Ich habe gerechnet und die Primimplikanten bestimmt, aber habe wieder ein Problem :)
Das Aufgabestellung besagt, dass ich die Minimalpolynome von f mittels reduzierter PI-Tafel bestimmen soll. Aber wie ich das ganze berechnet habe, sind meine alle Primimlpikanten auch Kernimplikanten, das heisst, es gibt nichts, woraus ich PI-Tafel aufstellen koennte :(
Wenn jemand Lust hat, auch Primimplikanten zu berechnen, hier sind meine Primimplikanten zum Vergleich:
[mm] \overline{x} \overline{y}+xv+xy \overline{v}+ \overline{x}yz \overline{v}
[/mm]
Die funktion f(x,y,z,v) ist gleich 1 in Punkten={0000,0001,0010,0011,0110,1001,1101,1111,1100,1011,1110}
Danke fuer die Hilfe
|
|
|
|
|
Hallo!
> Ja, Bastiane, du hast Recht. Beid DNF ist der Wert der
> Funktion gleich 1, das heisst, um die Primimplikanten hier
> zu berechnen, muss man alle andere Punkte (11 Punkte)
> benutzen und daraus DNF ableiten.
Gut, ich fürchtete schon, ich hätte mich mal wieder vertan...
> Ich habe gerechnet und die Primimplikanten bestimmt, aber
> habe wieder ein Problem :)
> Das Aufgabestellung besagt, dass ich die Minimalpolynome
> von f mittels reduzierter PI-Tafel bestimmen soll. Aber wie
> ich das ganze berechnet habe, sind meine alle
> Primimlpikanten auch Kernimplikanten, das heisst, es gibt
> nichts, woraus ich PI-Tafel aufstellen koennte :(
Also, ich weiß nicht genau, ob ich diese Begriffe richtig verstehe, ich weiß gar nicht, ob wir überhaupt Namen dafür hatten... Aber ich habe es mal gerechnet...
> Wenn jemand Lust hat, auch Primimplikanten zu berechnen,
> hier sind meine Primimplikanten zum Vergleich:
> [mm]\overline{x} \overline{y}+xv+xy \overline{v}+ \overline{x}yz \overline{v}
[/mm]
Ich hatte 6 Implikanten (oder wie die heißen) raus, wonach ich dann die Tabelle erstellt habe, wo man dann guckt, welche von denen man weglassen kann. (Ich hoffe, ihr macht das genauso, wie wir das gemacht haben!) Dabei hatte ich dann 00**, was auf jeden Fall benötigt wird, und bei den anderen kann ich je drei unterschielich wählen. Leider ist deine Möglichkeit glaube ich nicht dabei, aber ich kann mich auch verrechnet haben. Ich weiß auch gar nicht, wie man jetzt vorgeht - eigentlich müsste es doch dann mehrere Möglichkeiten geben, oder?
Wie man das rechnet, das macht man am besten notfalls mit jemandem zusammen, ich glaube, es wäre zu umständlich, hier die ganze Rechnung aufzuschreiben, oder? (Wenn du lust dazu hast, gucke ich's mir bestimmt an. )
Jedenfalls weiß ich nicht, was du mit Kernimplikanten meinst, sind das die, die auf jeden Fall benötigt werden? Dann hast du ja meine Antwort bereits, aber 100%ig sicher bin ich mir nicht - sorry.
Viele Grüße
Bastiane
|
|
|
|
|
Hallo vadimiron & Christiane,
Kann es sein, daß ihr euch beide mit der Lösung vertan habt? Ich habe den Quine-McCluskey-Algorithmus auf [mm]f\![/mm] losgelassen und habe dabei folgendes rausbekommen:
[Dateianhang nicht öffentlich]
PI-Chart:
[Dateianhang nicht öffentlich]
[mm] \fbox{\Rightarrow f(x)=\overline{x_1}x_2\overline{x_3} + x_1\overline{x_2}\,\overline{x_4}+\overline{x_1}x_2x_4}
[/mm]
Dieser Algorithmus liefert einem im ersten Schritt alle Primimplikanten der Booleschen Funktion. Daraus kann man sich dann mit der PI-Tabelle im zweiten Schritt solche Primimplikanten raussuchen, die unbedingt benötigt werden; (Die Anderen läßt man weg!)
Viele Grüße
Karl
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich] Anhang Nr. 2 (Typ: png) [nicht öffentlich]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:34 So 28.11.2004 | Autor: | Bastiane |
Hallo Karl!
Ach ja, so hieß das Verfahren. Ich habe es aber glaube ich genauso gemacht, aber natürlich kann es sein, dass ich mich verrechnet habe, da kann man sich ja immer sehr leicht vertun...
Aber hast du denn alles durchgerechnet? Na, jedenfalls habe ich das Gefühl, dass der Fragensteller nicht mehr wirklich an einer Antwort interessiert ist.
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:03 Mo 29.11.2004 | Autor: | vadimiron |
Karl_Pech
Danach habe ich das ganze nochmal berechnet, und wenn ich mich nicht irre (ich habe schon die Aufgabe abgegeben), habe dasselbe Resultat bekommen.
Ich hoffe, so ist richtig (dann bekommen ich viele Punkte :)) )
|
|
|
|