www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "HochschulPhysik" - Wellenfunktion
Wellenfunktion < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wellenfunktion: Idee
Status: (Frage) überfällig Status 
Datum: 20:32 So 03.05.2009
Autor: Adri_an

Aufgabe
Gegeben sei das eindimensionale Gaußsche-Wellenpaket
[mm]\Psi(x,t)=N\displaystyle\int\limits_{-\infty}^{+\infty}\exp(\diplaystyle\frac{-(k-k_0)^2}{a^2})\exp(i(kx-\omega(k)t))\ dk[/mm] mit [mm]\omega(k)=\displaystyle\frac{\hbar k^2}{2m}[/mm].
Berechnen Sie die Wellenfunktion [mm]\Psi(x,t)[/mm] und die Normierungskonstante N.

Mein Ansatz:
[mm]\displaystyle\frac{1}{N}\Psi(x,t)=\displaystyle\int\limits_{-\infty}^{+\infty}\exp(\displaystyle\frac{-(k-k_0)^2}{a^2})\exp(i(kx-\red{\omega(k)}t))\ dk[/mm]

[mm]=\displaystyle\int\limits_{-\infty}^{+\infty}\exp(\displaystyle\frac{-(k-k_0)^2}{a^2}+i(kx-\frac{\red{\hbar k^2}t}{\red{2m}}))\ dk[/mm]

[mm]=\displaystyle\int\limits_{-\infty}^{+\infty}\exp((\displaystyle-\frac{i\hbar t}{2m}-\diplaystyle\frac{1}{a^2})k^2+(\displaystyle\frac{2k_0}{a^2}+ix)k+\displaystyle(\frac{-k_0^2}{a^2}))\ dk[/mm]

Nun habe ich folgendes gesetzt:

[mm]A:=\displaystyle(-\frac{i\hbar t}{2m}-\displaystyle\frac{1}{a^2})[/mm]

[mm]B:=\displaystyle(\frac{2k_0}{a^2}+ix)[/mm]

[mm]C:=\displaystyle(\frac{-k_0^2}{a^2})[/mm].

Nach quadratischer Ergänzung des Exponenten, bin ich auf folgenden Ausdruck gekommen:

[mm]=\exp(\displaystyle\frac{4AC-B^2}{4A})\displaystyle\int\limits_{-\infty}^{+\infty}\exp(A(k+\displaystyle\frac{B}{2A})^2)\ dk[/mm].

Hier komme ich nicht mehr weiter.





        
Bezug
Wellenfunktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:21 Mo 04.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]