www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Volumen Berechnen Ellipse
Volumen Berechnen Ellipse < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen Berechnen Ellipse: Integralrechnung Volumen
Status: (Frage) beantwortet Status 
Datum: 11:30 So 12.01.2014
Autor: MathematikLosser

Die Ellipse in Mittelpunktslage mit a= 5 und b=3 begrenzt mit der Parabel y²=-4*(x-4) und der y-Achse ein Flächenstück. Wie groß ist der Rauminhalt des Körpers, wenn dieses Flächenstück um die y- Achse rotiert?

Mein Versuch:
[mm] y=\wurzel{-4*(x-4)} [/mm]
y(5)=8,94427191
y(3)=7,745966692

Gleichung umstellen:
[mm] x=\bruch{-y²}{4}+4 [/mm]
[mm] V=\pi*\integral_{7,7}^{8,9}{f(y)^2 dy} [/mm]
[mm] V=\pi*\integral \bruch{y^4}{16}-\bruch{2*4*y^2}{4}+16 [/mm]
[mm] V=\pi*(\bruch{y^5}{80}-\bruch{2*y^3}{3}+16y [/mm]
Nun  y(5) und y(3) einsetzen:
V=380,0529944-163,1540242
[mm] V=\pi*216,8989702 [/mm]

Stimmt das bzw. wie würde ich mir das richtig berechnen?
THX im Voraus.

        
Bezug
Volumen Berechnen Ellipse: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 So 12.01.2014
Autor: fred97


> Die Ellipse in Mittelpunktslage mit a= 5 und b=3 begrenzt
> mit der Parabel y²=-4*(x-4) und der y-Achse ein
> Flächenstück. Wie groß ist der Rauminhalt des Körpers,
> wenn dieses Flächenstück um die y- Achse rotiert?
>  
> Mein Versuch:
>  [mm]y=\wurzel{-4*(x-4)}[/mm]
>  y(5)=8,94427191


5 liegt nicht im Def. -Bereich von y !!!!!

>  y(3)=7,745966692

Hä ?  y(3)=1.


>  
> Gleichung umstellen:
>  [mm]x=\bruch{-y²}{4}+4[/mm]
>  [mm]V=\pi*\integral_{7,7}^{8,9}{f(y)^2 dy}[/mm]
>  [mm]V=\pi*\integral \bruch{y^4}{16}-\bruch{2*4*y^2}{4}+16[/mm]
>  
> [mm]V=\pi*(\bruch{y^5}{80}-\bruch{2*y^3}{3}+16y[/mm]
>  Nun  y(5) und y(3) einsetzen:
>  V=380,0529944-163,1540242
>  [mm]V=\pi*216,8989702[/mm]
>  
> Stimmt das


Nein.

Wo ist bei obigem denn die Ellipse geblieben ?????


FRED

>  bzw. wie würde ich mir das richtig berechnen?
>  THX im Voraus.


Bezug
        
Bezug
Volumen Berechnen Ellipse: Fragen ...
Status: (Antwort) fertig Status 
Datum: 11:46 So 12.01.2014
Autor: Al-Chwarizmi


> Die Ellipse in Mittelpunktslage mit a= 5 und b=3 begrenzt
> mit der Parabel y²=-4*(x-4) und der y-Achse ein
> Flächenstück. Wie groß ist der Rauminhalt des Körpers,
> wenn dieses Flächenstück um die y- Achse rotiert?
>  
> Mein Versuch:
>  [mm]y=\wurzel{-4*(x-4)}[/mm]
>  y(5)=8,94427191
>  y(3)=7,745966692
>  
> Gleichung umstellen:
>  [mm]x=\bruch{-y²}{4}+4[/mm]
>  [mm]V=\pi*\integral_{7,7}^{8,9}{f(y)^2 dy}[/mm]
>  [mm]V=\pi*\integral \bruch{y^4}{16}-\bruch{2*4*y^2}{4}+16[/mm]
>  
> [mm]V=\pi*(\bruch{y^5}{80}-\bruch{2*y^3}{3}+16y[/mm]
>  Nun  y(5) und y(3) einsetzen:
>  V=380,0529944-163,1540242
>  [mm]V=\pi*216,8989702[/mm]
>  
> Stimmt das bzw. wie würde ich mir das richtig berechnen?
>  THX im Voraus.


Hallo,

wenn ich mir obiges anschaue, kommt mir eine
ganze Reihe von Fragen auf.

1.) Ist dir die Bedeutung von a und b bekannt ?
    Ich befürchte, dass du da irgendwie an Integrations-
    grenzen gedacht hast ...

2.) Hast du dir die Lage der beiden Kurven im Koor-
    dinatensystem vergegenwärtigt ? (etwa anhand
    einer Zeichnung)

3.) Ist dir klar, welches Flächenstück um die y-Achse
    gedreht werden soll ?
    Mir selber ist es nämlich nicht klar, denn es gibt
    mehr als ein endliches Flächenstück, das zwischen
    den beiden Kurven und der y-Achse eingeschlossen ist !
  
4.) Welche Gleichung hast du zu welchem Zweck umgestellt ?

5.) Ist dir bewusst, dass du in deiner Rechnung überhaupt
    keine Ellipsengleichung verwendet hast, obwohl dies
    eigentlich notwendig erscheint, wenn es um einen
    Drehkörper geht, der durch Rotation eines Flächen-
    stücks entsteht, das teilweise von einer Ellipse
    begrenzt ist ?

LG ,   Al-Chwarizmi

Bezug
                
Bezug
Volumen Berechnen Ellipse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:21 So 12.01.2014
Autor: MathematikLosser

Ich habe a und b als Integrationsgrenzen benutzt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]