www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Vol. halber Torus Integrieren
Vol. halber Torus Integrieren < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vol. halber Torus Integrieren: brauche einen kleinen Tip
Status: (Frage) beantwortet Status 
Datum: 11:10 Do 11.06.2009
Autor: joropo

Hallo,
möchte einen"halben" Torus integrieren(Vol), d.h. im Axialschnitt stehen sich 2 Halbkreise mit der runden Seite gegenüber, und der senkrechten Seite nach Außen.Einen Zylinder kann ich int. u. glaube auch hier sind Zylinderkoordinaten zu empfehlen, komme aber nicht weiter.Der Schnitt ist auch als viertelkreise ansehbar, so ist y(x) nur im 1. Quadr.,wie int. ich das über dy, dx, ?welche funktion setze ich ein-und wo? Klar ist, daß d phi über 360° int. wird.  Danke vielmals.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
Vol. halber Torus Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Do 11.06.2009
Autor: Al-Chwarizmi


> Hallo,
> möchte einen"halben" Torus integrieren(Vol)(***), d.h. im
> Axialschnitt stehen sich 2 Halbkreise mit der runden Seite
> gegenüber, und der senkrechten Seite nach Außen.Einen
> Zylinder kann ich int. u. glaube auch hier sind
> Zylinderkoordinaten zu empfehlen, komme aber nicht
> weiter.
> ......
> ......


Hallo Elias,

du brauchst keine Zylinderkoordinaten und auch keine
Toruskoordinaten, sondern nur die "gewöhnliche" Formel
für das Volumen eines Rotationskörpers bei Rotation um
die x-Achse. Lege dazu den Axialschnitt entsprechend in
die x-y-Ebene, so dass die Rotationsachse auf die x-Achse
zu liegen kommt. Von den zwei Halbkreisflächen des
Axialschnittes brauchst du nur die eine, z.B. die obere.
Die ist oben durch die Strecke s  [mm] y_s:=R, -r\le x\le [/mm] r und
unten durch den Halbkreis  h: [mm] y_h:=R-...... [/mm]  begrenzt.

Das Volumen deines Rings bekommst du dann als Dif-
ferenz der Rotationsvolumina, welche du mittels der
Funktionen [mm] y_s [/mm] und [mm] y_h [/mm] erhältst.

LG     Al-Chwarizmi


(***) Das Volumen dieses Torus ist übrigens nicht
halb so groß wie das Volumen des entsprechenden
"ganzen" Torus' !





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]