Verteilungsfunktionen < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:06 Sa 12.11.2005 | Autor: | schosch |
Hallo! Ich habe Probleme Mit einer Aufgabe, die ich demnächst vorrechnen soll. Hab mir schon sehr viel Gedanken gemacht, aber bin noch nicht wirklich vorwärts gekommen.
Es seien [mm] X_{1}, [/mm] ..., [mm] X_{n} [/mm] unabhängige reellwertige Zufallsvariablen mit Verteilungsfunktionen [mm] F_{1}, ...,F_{n}.
[/mm]
(i)Bestimme die Verteilungsfunktionen von
[mm] M_{n}:= max{X_{1}, ..., X_{n}} [/mm] und [mm] m_{n}:= [/mm] min [mm] {X_{1}, ..., X_{n}}
[/mm]
Wie komme ich auf die Verteilungsfunktionen, wie kann man die sich vorstellen? Kann man überhaupt sagen, dass eine Zufallsvariable größer ist wie die andere? Kann ich die Verteilungsfunktionen so beschreiben, indem ich sie einfach in Intervalle aufteile und dann jedem Intervall die Funktion zuteil, die dort am größten ist?
(ii)Es sei [mm] F_{1}=...=F_{n}=F, [/mm] wobei F eine Verteilungsfunktion mit stetiger Dichtefunktion f sei. Bestimme die Dichtefunktionen von [mm] M_{n} [/mm] und [mm] m_{n}.
[/mm]
Wie komme ich auf die Dichtefunktionen? Wenn es nur noch eine Verteilungsfunktion gibt, sind dann die Zufallsvariablen auch alle gleich?
Ich bin sehr dankbar für jede Hilfe von euch, Schosch
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:13 So 13.11.2005 | Autor: | Infinit |
Hallo Schosch,
der Schlüssel zur Antwort auf Deine Fragen liegt in der Unabhängigkeit der Zufallsvariablen und der Beachtung der Definition einer Verteilungsfunktion.
Nur noch mal zur Erinnerung:
Einem Zufallsexperiment $ [mm] \xi$ [/mm] wird zur mathematischen Handhabung ein numerischer Wert $ [mm] X(\xi)$ [/mm] zugeordnet, wobei die Verteilungsfunktion $ F$ über diesen Wert dann die Wahrscheinlichkeit angibt, dass das Ergebnis des Zufallsexperimentes eines der Ereignisse ist, für die $ [mm] X(\xi) \leq [/mm] x $ gilt. Die Verteilungsfunktion hat noch die Randbedingungen, dass ihr Wertebereich zwischen 0 und 1 liegt und dass für das sog. sichere Experiment $ [mm] F(\infty) [/mm] = 1 $ gilt und dafür, dass garantiert keines der Ereignisse eintritt, ein Nullexperiment, [mm] $F(-\infty) [/mm] = 0$ gilt.
Achte darauf, dass bei Deiner Fragestellung das Maximum bzw. Minimum einer Zufallsvariablen auftritt, nicht das Extremum über n Zufallsvariable.
Damit ist Deine erste Frage eigentlich schon beantwortet, denn wenn Du Dir den Wertebereich einer reelwertigen Zufallsvariablen anschaust und das Maximum der Zufallsvariablen Dir überlegst, dann erhält man gerade beim Einsetzen des Maximums der ersten Zufallsvariablen $ [mm] X_{1}$ [/mm] in die Verteilungsfunktion $ [mm] F(\max X_{1}) [/mm] = 1 $.
Jetzt kommt noch die Unabhängigkeit der Zufallsvariablen ins Spiel, die Dir erlauben, die sich ergebende Verteilungsfunktion als Produkt der Einzelfunktionen zu schreiben. Was dann herauskommt, wenn man $ [mm] F(\min X_{1}) [/mm] $ berechnet und in ein Produkt einsetzt, dürfte wohl klar sein.
Die Überlegungen zur zweiten Teilaufgabe sind analog zu eben durchgeführten Überlegung. Auch die Dichten unabhängiger Zufallsvariablen ergeben sich als Produkt der Einzeldichten.
Viele Sonntagsgrüße,
Infinit
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:24 Mi 03.05.2006 | Autor: | lucasw |
Hallo!
Wahrscheinlich gibt es eine ganz triviale Antwort, aber was genau macht denn nun die Maximum-Funktion, wenn sie sozusagen als Parameter wiederum Funktionen bekommt? Denn Zufallsvariablen sind ja Abbildungen.
> [mm]M_{n}:= max{X_{1}, ..., X_{n}}[/mm] und [mm]m_{n}:=[/mm] min [mm]{X_{1}, ..., X_{n}}[/mm]
Über eine Antwort würde ich mich freuen.
Lucas
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:38 Mi 03.05.2006 | Autor: | felixf |
Hallo Lucas!
> Wahrscheinlich gibt es eine ganz triviale Antwort, aber was
> genau macht denn nun die Maximum-Funktion, wenn sie
> sozusagen als Parameter wiederum Funktionen bekommt? Denn
> Zufallsvariablen sind ja Abbildungen.
> > [mm]M_{n}:= max{X_{1}, ..., X_{n}}[/mm] und [mm]m_{n}:=[/mm] min [mm]{X_{1}, ..., X_{n}}[/mm]
Das ist (normalerweise) punktweise gemeint: Sprich, sind die [mm] $X_i$ [/mm] Funktionen [mm] $\Omega \to \IR$, [/mm] so ist [mm] $M_n(\omega) [/mm] = [mm] \max\{ X_1(\omega), \dots, X_n(\omega) \}$ [/mm] fuer alle [mm] $\omega \in \Omega$. [/mm] Und genauso fuers [mm] $\min$.
[/mm]
Zum OP: Es ist [mm] $P(\max\{ X_1, \dots, X_n \} \le [/mm] x) = [mm] P(X_1 \le [/mm] x, [mm] \dots, X_n \le [/mm] x)$ und [mm] $P(\min\{ X_1, \dots, X_n \} \le [/mm] x) = 1 - [mm] P(\min\{ X_1, \dots, x_n \} [/mm] > x) = ...$. Damit solltest du weiterkommen...
LG Felix
|
|
|
|