www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Verständnispr.Kurvendiskussion
Verständnispr.Kurvendiskussion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnispr.Kurvendiskussion: Interpretation dop. Nullstelle
Status: (Frage) beantwortet Status 
Datum: 16:24 Do 31.07.2008
Autor: cmg

Aufgabe
Diskutieren und skiziieren Sie die Funktion:

[mm] y=x^2 [/mm] / [mm] (x^2 [/mm] - x)

Hi,

ich habe mal eine Frage.
Ich habe o.g. Funktion berechnet, nur habe ich eine Frage den Nullstellen.

Also wenn ich den Fkt gleich 0 setze und den Nenner multipliziere, dann erhalte ich ja 0 = [mm] x^2. [/mm] Für mich war das bisher immer das Zeichen: 2 Nullstellen bei 0, also Scheitelpunkt der Parabell und damit Extrempunkt.

Wenn ich nun beginne die Fkt zu zeichnen, erhalte ich ja mit dem Pol bei 1 und der Asymptote bei 1 noch ein paar Einschränkungen. Wenn man das Verhalten im Unendlichen berechnet entsteht eben nur eine Form.
Nämlich diese hier:
[Dateianhang nicht öffentlich]
[url=1]
Nur wie passt das nun mit meinen Vorstellungen einer doppelten NS zusammen? Es ist ja weder ein Extremwert (Minima/Maxima), ok, Scheilpunkt passt quasi, aber sie ist nach unten geöffnet, obwohl kein Minus vor dem [mm] x^2 [/mm] steht. Könnte ihr mir das erklären?
Gilt das mit der doppelten Nullstelle nicht immer oder interpretiere ich das Bild nur falsch?



Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Verständnispr.Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:27 Do 31.07.2008
Autor: M.Rex

Hallo

Die Stelle x=0 ist hier eine hebbare Definitionslücke, denn eigentlich ist die Funktion für x=0 nicht definiert, da der Nenner Null wird.

Aber:

[mm] \bruch{x²}{x²-x}=\bruch{x*x}{x(x-1)}=\bruch{x}{x-1} [/mm]

Marius

Bezug
                
Bezug
Verständnispr.Kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Do 31.07.2008
Autor: angela.h.b.


>  denn
> eigentlich ist die Funktion für x=0 nicht definiert,

Hallo,

es ist mir wichtig zu betonen:

'nen "eigentlich" gbt's hier nicht!

Die Funktion ist an den Stellen x=0 und x=1 nicht definiert,

> da der
> Nenner Null wird.

Daher hat die Funktion f an der Stelle x=0 keine Nullstelle.

---

Allerdings  ist diese Definitionslücke bei x=0 in der Tat hebbar:

mit

g(x):=

> [mm]\bruch{x²}{x²-x}=\bruch{x*x}{x(x-1)}=\bruch{x}{x-1}[/mm]

hat man eine Funktion [mm] g:\IR [/mm] \ [mm] \{1\} \to \IR [/mm] gefunden, welche auf  [mm] \IR [/mm] \ [mm] \{0, 1\} [/mm] komplett mit f übereinstimmt, aber zusätzlich an der Stelle x=0 definiert ist.

Und weil das so ist, sieht die Funktion f an der Stelle x=0 anders aus als von cmg vermutet.


Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]