Verschiebungssatz < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:45 Mi 21.09.2011 | Autor: | Fishbon3 |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Aufgabe | a)
Geben Sie für die Funktion
$ f(t)=\begin{cases} sin(\bruch{\pi}{2}*t), & \mbox{falls } 0\le t < 1 } \\ 0, & \mbox{falls } t\ge 1 \end{cases} $
die rechnerische Funktionsvorschrift ohne Fallunterscheidungen (d.h. ohne {} mit Hilfe der Einheitssprungfunktion $ \sigma(t) $ an.
b)
Berechnen Sie die Laplace-Transformierte F(s) für die in Teilaufgabe a) definierte Funktion f(t). Stellen Sie das Ergebnis als einen einzigen Bruch dar (anstelle einer Summe mehrerer Brüche) und vereinfach Sie so weit wie möglich. |
Hallo. Ich habe mal wieder eine Frage was Umformungen und anwendung des Verschiebungsssatzes betrifft
Meine letzte Frage war für mich ja noch lösbar dieses mal komme ich trotz Hilfe vom Prof nicht weiter.
zu a)
$ f(t) = [mm] (\sigma(t) [/mm] - [mm] \sigma(t-1)) sin(\bruch{\pi}{2} [/mm] *t)$
b)
$ f(t) = [mm] \sigma(t)*sin(\bruch{\pi}{2}*t) [/mm] - [mm] \sigma(t-1)*sin(\bruch{\pi}{2}*t) [/mm] $
Nun fehlt im Sinus Teil ja das t-1 um den Verschiebungssatz anwenden zu können. Die weiteren Umformungen hat der Prof vorgenommen die für mich zwar plausibel aber meiner Meinung nach nicht zum Ziel führen. Jedenfalls ist für mich nicht sichtbar
$ f(t) = [mm] \sigma(t)*sin(\bruch{\pi}{2}*t) [/mm] - [mm] \sigma(t-1)*sin(\bruch{\pi}{2}(t-1+1)) [/mm] $
$ f(t) = [mm] \sigma(t)*sin(\bruch{\pi}{2}*t) [/mm] - [mm] \sigma(t-1)*sin(\bruch{\pi}{2}(t-1)+\bruch{\pi}{2}) [/mm] $
Nun weiß ich aus der Lösung ($F(s) = [mm] \bruch{\bruch{\pi}{2}-s*e^{-s}}{s^{2} + \bruch{\pi^{2}}{4}}$) [/mm] das auf jeden Fall der Cosinus ins Spiel kommt. Additionstheoreme führen mich zwar zum Cosinus jedoch geht mir dann das (t-1) verloren welches ich für den Verschiebungssatz benötige
Wodran ich mich störe ist dieses pi/2 welches mich im Kopf dran hindert den Verschiebungssatz anzuwenden.
Vielleicht kann mir jemand beim letzten Term auf die Sprünge helfen
mfG
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo Fishbon3,
> a)
>
> Geben Sie für die Funktion
>
> [mm]f(t)=\begin{cases} sin(\bruch{\pi}{2}*t), & \mbox{falls } 0\le t < 1 } \\ 0, & \mbox{falls } t\ge 1 \end{cases}[/mm]
>
> die rechnerische Funktionsvorschrift ohne
> Fallunterscheidungen (d.h. ohne {} mit Hilfe der
> Einheitssprungfunktion [mm]\sigma(t)[/mm] an.
>
> b)
>
> Berechnen Sie die Laplace-Transformierte F(s) für die in
> Teilaufgabe a) definierte Funktion f(t). Stellen Sie das
> Ergebnis als einen einzigen Bruch dar (anstelle einer Summe
> mehrerer Brüche) und vereinfach Sie so weit wie möglich.
> Hallo. Ich habe mal wieder eine Frage was Umformungen und
> anwendung des Verschiebungsssatzes betrifft
> Meine letzte Frage war
> für mich ja noch lösbar dieses mal komme ich trotz Hilfe
> vom Prof nicht weiter.
>
> zu a)
>
> [mm]f(t) = (\sigma(t) - \sigma(t-1)) sin(\bruch{\pi}{2} *t)[/mm]
>
> b)
>
> [mm]f(t) = \sigma(t)*sin(\bruch{\pi}{2}*t) - \sigma(t-1)*sin(\bruch{\pi}{2}*t)[/mm]
>
> Nun fehlt im Sinus Teil ja das t-1 um den Verschiebungssatz
> anwenden zu können. Die weiteren Umformungen hat der Prof
> vorgenommen die für mich zwar plausibel aber meiner
> Meinung nach nicht zum Ziel führen. Jedenfalls ist für
> mich nicht sichtbar
>
> [mm]f(t) = \sigma(t)*sin(\bruch{\pi}{2}*t) - \sigma(t-1)*sin(\bruch{\pi}{2}(t-1+1))[/mm]
>
> [mm]f(t) = \sigma(t)*sin(\bruch{\pi}{2}*t) - \sigma(t-1)*sin(\bruch{\pi}{2}(t-1)+\bruch{\pi}{2})[/mm]
>
> Nun weiß ich aus der Lösung ([mm]F(s) = \bruch{\bruch{\pi}{2}-s*e^{-s}}{s^{2} + \bruch{\pi^{2}}{4}}[/mm])
> das auf jeden Fall der Cosinus ins Spiel kommt.
> Additionstheoreme führen mich zwar zum Cosinus jedoch geht
> mir dann das (t-1) verloren welches ich für den
> Verschiebungssatz benötige
> Wodran ich mich störe ist dieses pi/2 welches mich im
> Kopf dran hindert den Verschiebungssatz anzuwenden.
> Vielleicht kann mir jemand beim letzten Term auf die
> Sprünge helfen
>
Es ist doch:
[mm]sin(\bruch{\pi}{2}(t-1)+\bruch{\pi}{2})=sin(\bruch{\pi}{2}(t-1))*\cos\left(\bruch{\pi}{2}\right)+cos(\bruch{\pi}{2}(t-1))*\sin\left(\bruch{\pi}{2}\right)=\cos\left(\bruch{\pi}{2}(t-1)\right)[/mm]
> mfG
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:32 Mi 21.09.2011 | Autor: | Fishbon3 |
Das ist richtig. Soweit war ich auch schon. Jedoch ist mir nicht ersichtlich was mir die Umformung mit den Additionstheoremen gebracht hat.
Sehe ich das richtig das man nun stur den Verschiebungssatz anwenden soll/muß/kann ?
also [mm] $\sigma(t-t_{0})*f(t-t_{0}) [/mm] - > [mm] e^{-s*t_{0}}*F(s)$
[/mm]
wobei f(t) = [mm] cos(\bruch{\pi}{2}* [/mm] t) -> [mm] F(s)=\bruch{s}{s^{2}+\bruch{\pi^{2}}{4}}
[/mm]
Bisher habe ich immer gedacht das [mm] t-t_{0} [/mm] sobwohl beim Sigma als auch in der Funktion übereinstimmen müssen. Und in der Cosinusfunktion [mm] (\cos\left(\bruch{\pi}{2}(t-1)\right) [/mm] ist halt ein [mm] \bruch{\pi}{2} [/mm] zuviel was mich bisher daran gehindert hat alles stur anzuwenden.
|
|
|
|
|
Hallo Fishbon3,
> Das ist richtig. Soweit war ich auch schon. Jedoch ist mir
> nicht ersichtlich was mir die Umformung mit den
> Additionstheoremen gebracht hat.
>
> Sehe ich das richtig das man nun stur den Verschiebungssatz
> anwenden soll/muß/kann ?
>
> also [mm]\sigma(t-t_{0})*f(t-t_{0}) - > e^{-s*t_{0}}*F(s)[/mm]
>
Ja, das siehst Du richtig.
> wobei f(t) = [mm]cos(\bruch{\pi}{2}*[/mm] t) ->
> [mm]F(s)=\bruch{s}{s^{2}+\bruch{\pi^{2}}{4}}[/mm]
>
> Bisher habe ich immer gedacht das [mm]t-t_{0}[/mm] sobwohl beim
> Sigma als auch in der Funktion übereinstimmen müssen. Und
> in der Cosinusfunktion
> [mm](\cos\left(\bruch{\pi}{2}(t-1)\right)[/mm] ist halt ein
> [mm]\bruch{\pi}{2}[/mm] zuviel was mich bisher daran gehindert hat
> alles stur anzuwenden.
Gruss
MathePower
|
|
|
|