www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Vereinfachung
Vereinfachung < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinfachung: Frage zu Umstellung
Status: (Frage) beantwortet Status 
Datum: 23:52 Sa 02.03.2019
Autor: sancho1980

Bin gerade im Netz auf []diese Seite gestoßen und habe eine Frage. Es geht um Beweis #2, Grenzwert bestimmen. Im vierten Schritt wird (2n + 1)! zu (2n)! vereinfacht. Ansonsten könnte ich die Vereinfachung nachvollziehen, nur müsste m.E. (2n + 1)! stehenbleiben. Ist das ein Fehler?

        
Bezug
Vereinfachung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:52 So 03.03.2019
Autor: Gonozal_IX

Hallo Sancho,

der Beweis ist murks. Er stimmt zwar, verwendet aber einige Schritte unerklärt und ohne Begründung.

Was mir aufgefallen ist:

1.) In Punkt 3 wird die "Regel von l'Hopital" verwendet. Wenn man dies darf, warum berechnet man dann den Grenzwert von [mm] $\frac{\sin(x)}{x}$ [/mm] nicht gleich mit dieser?

2.) Der von dir angegebenen Schritt wird einfach mit "Die Reihe lässt sich noch weiter vereinfachen" begründet... vermutlich weil der Autor keine Ahnung hatte, was da passiert ist!

Nun gibt es zwei Möglichkeiten:
a) Das x im Nenner wurde einfach mit dem +1 in der Potenz gekürzt. Dann müsste aber, wie du bereits erkannt hast, im Nenner das (2n+1)! stehen bleiben. Das kann man so machen und den Beweis genau so fortführen. Wenn das gemeint war, ist das wirklich ein Fehler.

b) Der Autor hat gemeint, dass auch hier ein Bruch der Form [mm] \bruch{0}{0} [/mm] vorliegt und will wiederum die "Regel von l'Hopital" verwenden. Dann käme der angegebene Ausdruck tatsächlich zustande.
Aber: Wieso kann man Differentation und Reihenbildung vertauschen? Das wird hier mit keinem Wort erwähnt.... wurde das früher schon mal begründet, könnte man das natürlich so machen.
Ebenso fehlt dann natürlich die Begründung, warum ein Bruch der Form  [mm] \bruch{0}{0} [/mm]  vorliegt, dafür müsste man nämlich den Grenzwert in die Reihe reinziehen. Warum darf man das?

3.) Diese letzte Begründung für das Vertauschen von Grenzwert und Reihenbildung fehlt auch in Schritt 6

Gruß,
Gono

Bezug
        
Bezug
Vereinfachung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:28 So 03.03.2019
Autor: fred97

Ich hab  mich totgelacht,  als ich die verlinkte  Seite gelesen habe.

Da wird der Grenzwert von x/x für [mm] x\to [/mm] 0 mit L'Hospital  berechnet,  zum Piepen !

Machen  wir es kurz : der Autor hat vom Mathematik  keine  Ahnung.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]