www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Verbundswsk aus Bedingter Wsk
Verbundswsk aus Bedingter Wsk < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verbundswsk aus Bedingter Wsk: Markoff Prozess 1. Ord.
Status: (Frage) überfällig Status 
Datum: 12:08 Mo 19.07.2010
Autor: Drno

Aufgabe
Folgende Matrix der bedingten Wahrscheinlichkeiten ist gegeben:

[mm] \pmat{ 0 & \bruch{5}{6} & \bruch{7}{9} \\ \bruch{1}{3} & 0 & \bruch{2}{9} \\ \bruch{2}{3} & \bruch{1}{6} & 0 } [/mm]

Wobei z.B. P(A|B) = [mm] \bruch{5}{6} [/mm] bzw. [mm] P_B(A) [/mm] = [mm] \bruch{5}{6}. [/mm]

Man kann die Wahrschinlichkeiten P(A), P(B) und P(C) bestimmen durch Lösen des Gleichungssystems:

[mm] \pmat{ P(A) \\ P(B) \\ P(C) } [/mm] = [mm] \pmat{ 0 & \bruch{5}{6} & \bruch{7}{9} \\ \bruch{1}{3} & 0 & \bruch{2}{9} \\ \bruch{2}{3} & \bruch{1}{6} & 0 } [/mm] * [mm] \pmat{ P(A) \\ P(B) \\ P(C) } [/mm]

Was dem Satz der Vollständigen Wahrscheinlichkeit entspricht. Mit der Nebenbedingung 1 = P(A) + P(B) + P(C) erhält man:
P(A) = [mm] \bruch{4}{9}, [/mm] P(B) = [mm] \bruch{2}{9} [/mm] und P(C) = [mm] \bruch{3}{9}. [/mm]

Nun ist offensichtlich aber P(A|B) * P(B) [mm] \not= [/mm]  P(B|A) * P(A)!
[mm] (\bruch{5}{6} [/mm] * [mm] \bruch{2}{9} \not= \bruch{1}{3} [/mm] * [mm] \bruch{4}{9} [/mm] )

Damit ist P(AB)  [mm] \not= [/mm] P(BA)!

Müsste dass nicht gleich sein? Und ist damit nicht auch das Bayestheorem verletzt? Wie kann das passieren?

Ich bin mir relativ sicher, dass die Zahlenwerte korrekt sind, da ich sie aus einer Übung entnommen habe und selber noch einmal nachgerechnet habe.

Habe ich da etwas Grundlegendes am Bayestheorem  missverstanden?
Oder kann man das bei Markoff-Prozessen nicht einfach so anwenden?

Vielen Dank für eure Hilfe,

Moritz

        
Bezug
Verbundswsk aus Bedingter Wsk: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Fr 23.07.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]