Vektorraum - ja oder nein? < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Hallo!
Ich habe folgende Aufgabe:
Weisen Sie nach, dass die Menge
V = (f/f(x) = ax +b mit a, b element R) der linearen Funktionen ein Vektorraum ist. Dabei werden die Addition f1 +f2 und die skalare Multiplikation r *f punktweise definiert: (f1+f2)(x) = f1(x) + f2(x) und (r*f) (x) = r*f(x)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:16 Sa 04.06.2005 | Autor: | Sigrid |
Hallo,
> Ich habe folgende Aufgabe:
> Weisen Sie nach, dass die Menge
> V = (f/f(x) = ax +b mit a, b element R) der linearen
> Funktionen ein Vektorraum ist. Dabei werden die Addition f1
> +f2 und die skalare Multiplikation r *f punktweise
> definiert: (f1+f2)(x) = f1(x) + f2(x) und (r*f) (x) =
> r*f(x)
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Hast du dir schon mal unsere Forenregeln durchgelesen? Was hast du dir zu dieser Aufgabe bisher überlegt? Schreibe deine Lösungsansätze bitte immer dazu.
Ein paar Tips will ich dir schon mal geben, auch auf die Gefahr hin, dass deine Schwierigkeiten woanders liege.
Du musst der Reihe nach die Vektorraum-Eigenschaften nachweisen.
Zunächst mal zeigst du, dass wenn [mm] f_1 [/mm] und [mm] f_2 [/mm] lineare Funktionen sind, dass dann auch [mm] f_1 [/mm] + [mm] f_2 [/mm] eine lineare Funktion ist.
Es sei: [mm] f_1(x) = a_1 \cdot x + b_1 [/mm] und [mm] f_2(x) = a_2 \cdot x + b_2 [/mm] Dann ist
[mm] (f_1 + f_2)(x) = f_1(x) + f_2(x) = a_1 \cdot x + b_1 + a_2 \cdot x + b_2 = (a_1 + a_2) x + (b_1 + b_2) [/mm]
Jetzt überleg mal, ob dies eine lineare Funktion ist!
Entsprechend machst du es mit der skalaren Multiplikation.
Jetzt kommen der Reihe nach die Gesetze
Zunächst das Kommutativgesetz:
[mm] (f_1 + f_2)(x) = a_1 \cdot x + b_1 + a_2 \cdot x + b_2 = (a_1 + a_2) x + (b_1 + b_2) = (a_2 + a_1) x + b_2 + b_1 = a_2 \cdot x + b_2 + a_1 \cdot x + b_1 = f_2(x) + f_1(x) = (f_2 + f_2) (x) [/mm]
So geht's dann weiter mit den anderen Gesetzen.
Versuch's mal.
Gruß
Sigrid
|
|
|
|
|
erstmal vielen danke für die hilfe bisher!
bin hier noch ganz neu und hab mir die forenregeln bisher nur überflogen, sorry.
die lösung ist einleuchtend, hab aber noch die frage, wie man bei der skalaren Multiplikation nachweist, ob lineare Funktionen vorliegen?
Wie lautet eine geeignete Beispielfunktion???
Würde mich über ihre Hilfe freuen.
Danke im vorraus
Gruß Manuel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:13 Mo 06.06.2005 | Autor: | Julius |
Hallo!
Ist $f(x)=ax+b$ eine (affin-)lineare Funktion und [mm] $\lambda \in \IR$.
[/mm]
Dann gilt für alle $x [mm] \in \IR$:
[/mm]
[mm] $(\lambda \cdot [/mm] f)(x) = [mm] \lambda \cdot [/mm] f(x) = [mm] \lambda \cdot [/mm] (ax+b) = [mm] (\lambda \cdot [/mm] a)a + [mm] \lambda \cdot [/mm] b$.
Dies ist aber wieder eine (affin-)lineare Funktion.
Viele Grüße
Julius
|
|
|
|