Vektorräume - Basis und Dimens < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:10 Mi 04.11.2009 | Autor: | MosDef |
Aufgabe | Zeigen Sie, dass die Dimension eines endlichdimensionalen [mm] \IC-Vektorraumes [/mm] aufgefasst als [mm] \IR-Vektorraum [/mm] gerade ist. |
So viel weiß ich: Jeder endlich erzeugte VR besitzt eine Basis (= lin. unabh. Erzeugendensystem). Die Anzahl der Elemente der Basis wird als Dimension bezeichnet.
Ich beginne bei der Aufgabe wie folgt:
Sei V ein [mm] \IC-VR [/mm] und [mm] v\in [/mm] V. [mm] (v_j)_j_=_(_1_,_._._._,_n_) [/mm] ist [mm] \IC-Basis [/mm] von V [mm] (dim_\IC [/mm] V = n)
[mm] \gdw \exists [/mm] eind. best. [mm] \lambda_j \in \IC [/mm] mit [mm] \lambda_j [/mm] = [mm] \mu_j+i\nu_j [/mm] , sodass gilt:
[mm] v=\summe_{j=1}^{n}\lambda_jv_j [/mm] = [mm] \summe_{j=1}^{n}(\mu_j+i\nu_j)v_j, [/mm] falls v=0 [mm] \Rightarrow \lambda_1=...=\lambda_n [/mm] = 0
Ich denke, das müsste so weit in Ordnung sein. Völlig unklar ist mir allerdings, was " [mm] \IC-VR [/mm] aufgefasst als [mm] \IR-VR [/mm] " bedeuten soll und auch, wie ich bestimmen kann, ob die Basis gerade ist.
Hat jemand Lust, sich mit diesen Fragen zu beschäftigen?
Schöne Grüße, Mos
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 14:38 Mi 04.11.2009 | Autor: | MosDef |
> Zeigen Sie, dass die Dimension eines endlichdimensionalen
> [mm]\IC-Vektorraumes[/mm] aufgefasst als [mm]\IR-Vektorraum[/mm] gerade ist.
> So viel weiß ich: Jeder endlich erzeugte VR besitzt eine
> Basis (= lin. unabh. Erzeugendensystem). Die Anzahl der
> Elemente der Basis wird als Dimension bezeichnet.
>
> Ich beginne bei der Aufgabe wie folgt:
> Sei V ein [mm]\IC-VR[/mm] und [mm]v\in[/mm] V. [mm](v_j)_j_=_(_1_,_._._._,_n_)[/mm]
> ist [mm]\IC-Basis[/mm] von V [mm](dim_\IC[/mm] V = n)
> [mm]\gdw \exists[/mm] eind. best. [mm]\lambda_j \in \IC[/mm] mit [mm]\lambda_j[/mm] =
> [mm]\mu_j+i\nu_j[/mm] , sodass gilt:
> [mm]v=\summe_{j=1}^{n}\lambda_jv_j[/mm] =
> [mm]\summe_{j=1}^{n}(\mu_j+i\nu_j)v_j,[/mm] falls v=0 [mm]\Rightarrow \lambda_1=...=\lambda_n[/mm]
> = 0
>
> Ich denke, das müsste so weit in Ordnung sein. Völlig
> unklar ist mir allerdings, was " [mm]\IC-VR[/mm] aufgefasst als
> [mm]\IR-VR[/mm] " bedeuten soll und auch, wie ich bestimmen kann, ob
> die Basis gerade ist.
>
Fasse ich V als [mm] \IR-VR [/mm] auf, einfach indem ich sage [mm] \mu_j,\nu_j \in \IR [/mm] ?
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 15:16 Mi 04.11.2009 | Autor: | MosDef |
> > Zeigen Sie, dass die Dimension eines endlichdimensionalen
> > [mm]\IC-Vektorraumes[/mm] aufgefasst als [mm]\IR-Vektorraum[/mm] gerade ist.
> > So viel weiß ich: Jeder endlich erzeugte VR besitzt
> eine
> > Basis (= lin. unabh. Erzeugendensystem). Die Anzahl der
> > Elemente der Basis wird als Dimension bezeichnet.
> >
> > Ich beginne bei der Aufgabe wie folgt:
> > Sei V ein [mm]\IC-VR[/mm] und [mm]v\in[/mm] V.
> [mm](v_j)_j_=_(_1_,_._._._,_n_)[/mm]
> > ist [mm]\IC-Basis[/mm] von V [mm](dim_\IC[/mm] V = n)
> > [mm]\gdw \exists[/mm] eind. best. [mm]\lambda_j \in \IC[/mm] mit
> [mm]\lambda_j[/mm] =
> > [mm]\mu_j+i\nu_j[/mm] , sodass gilt:
> > [mm]v=\summe_{j=1}^{n}\lambda_jv_j[/mm] =
> > [mm]\summe_{j=1}^{n}(\mu_j+i\nu_j)v_j,[/mm] falls v=0 [mm]\Rightarrow \lambda_1=...=\lambda_n[/mm]
> > = 0
> >
> > Ich denke, das müsste so weit in Ordnung sein. Völlig
> > unklar ist mir allerdings, was " [mm]\IC-VR[/mm] aufgefasst als
> > [mm]\IR-VR[/mm] " bedeuten soll und auch, wie ich bestimmen kann, ob
> > die Basis gerade ist.
> >
> Fasse ich V als [mm]\IR-VR[/mm] auf, einfach indem ich sage
> [mm]\mu_j,\nu_j \in \IR[/mm] ?
>
Dann sind [mm] \mu_j,\nu_j [/mm] eind. best. und es gilt:
[mm] \summe_{j=1}^{n}(\mu_j+i\nu_j)v_j [/mm] = [mm] \summe_{j=1}^{n}\mu_jv_j [/mm] + [mm] \summe_{j=1}^{n} \nu_j(iv_j)
[/mm]
Damit ist [mm] (v_j,iv_j) \IR-Basis [/mm] und [mm] dim_\IR [/mm] V = 2n, also gerade.
Jetzt hat mir in der Kürze der Zeit zwar niemand geholfen. Ich würde mich aber freuen, wenn mir trotzdem noch jemand sagen könnte, ob ich die Aufgabe so richtig gelöst habe.
Vielen Dank, Euer Mos
|
|
|
|
|
> Zeigen Sie, dass die Dimension eines endlichdimensionalen
> [mm]\IC-Vektorraumes[/mm] aufgefasst als [mm]\IR-Vektorraum[/mm] gerade ist.
Hallo,
mal angenommen, es wäre [mm] (v_1, ...,v_n) [/mm] eine Basis des [mm] \IC [/mm] Vektorraumes V.
dann sind die n Vektoren linear unabhängig, und man kann man jedes Element [mm] v\in [/mm] V schreiben als
[mm] v=c_1v_1+...+c_nv_n [/mm] mit [mm] c_i\in \IC.
[/mm]
Im VR V über [mm] \IR [/mm] sind dieselben Elemente enthalten, aber man darf nur Linearkombinationen mit Koeffizienten aus [mm] \IR [/mm] bilden.
Überlege Dir (=beweise!) , daß [mm] (v_1, iv_1, ...,v_n, iv_n) [/mm] ein Erzeugendensystem des Raumes ist und zeige (=beweise!) anschließend die Unabhängigkeit der 2n Vektoren.
Ich sehe, daß Du das Ergebnis als solches inzwischen ja schon gefunden hast.
Gruß v. Angela
|
|
|
|