www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Vektorisierung Matrix
Vektorisierung Matrix < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorisierung Matrix: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:48 So 16.04.2017
Autor: Peter_123

Hallo,

Es sei $z$ ein Vektor mit [mm] $\frac{k^2 -k}{2}$ [/mm] Einträgen und $d$ ein Vektor mit $kf - [mm] \frac{f^2 -f}{2}$ [/mm] Einträgen, wobei $f<k$.
$L$ sei eine Matrix mit $k$ Zeilen und $f$- Spalten.

Ich möchte L gerne vektorisieren (sagen wir zu A) sodass

$(z - Ad)$ Sinn macht .... nun dachte ich daran :

$x(i,j)$ soll den Bereich $1 [mm] \le [/mm] i < j [mm] \lek$ [/mm] auf $[1, [mm] \frac{k^2 -k}{2}]$ [/mm] abbilden und $y(i,r)$ den Bereich $1 [mm] \le [/mm] i [mm] \lek$, $1\le [/mm] r [mm] \le [/mm] f$ , $ r [mm] \le [/mm] i$ auf $[1, kf - [mm] \frac{f^2 -f}{2}$ [/mm] , dann ist für $1 [mm] \le [/mm] i < j [mm] \le [/mm] k$ , $r [mm] \le [/mm] min(i,f)$

[mm] $L_{jr} [/mm] = [mm] A_{x(i,j),y(i,r)}$ [/mm]
und
[mm] $L_{ir} [/mm] = [mm] A_{x(i,j),y(j,r)}$ [/mm]

für x(i,j) dachte ich an $x(i,j)= [mm] \frac{(j-2)(j-1)}{2}+i [/mm] $

aber ich finde derweil nix geeignetes für y(i,r)

vielen Dank für eure Hilfe.

LG

        
Bezug
Vektorisierung Matrix: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Di 18.04.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]