Variation und Differential < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Eine Näherung in erster Ordnung lautet für eine gewöhnliche Funktion f(x,y):
[mm] f(x+dx,y+dy)\approx [/mm] f+ [mm] \frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy.
[/mm]
dann gilt:
[mm] df=f(x+dx,y+dy)-f(x,y)=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}? [/mm] |
Hallo
Auf
http://de.wikipedia.org/wiki/Lagrangefunktion#Ableitung_aus_dem_Hamiltonschen_Prinzip
steht der Weg,wie man auf die Euler-Lagrange-Gleichung kommt.
Mir ist jedoch der Rechenschritt nicht klar, der in der Aufgabenstellung steht.
f(x+dx,y+dy) wurde mit der Taylorentwicklung berechnet, jedoch nur nach der 1. Ordnung. Daher kein Gleichheitszeichen.
Wieso steht dann bei der Differenz f(x+dx,y+dy)-f(x,y) ein gleichheitszeichen?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:20 Do 22.03.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:56 Do 22.03.2012 | Autor: | notinX |
Hallo,
> Eine Näherung in erster Ordnung lautet für eine
> gewöhnliche Funktion f(x,y):
> [mm]f(x+dx,y+dy)\approx[/mm] f+ [mm]\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy.[/mm]
>
> dann gilt:
> [mm]df=f(x+dx,y+dy)-f(x,y)=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}?[/mm]
>
> Hallo
> Auf
> http://de.wikipedia.org/wiki/Lagrangefunktion#Ableitung_aus_dem_Hamiltonschen_Prinzip
> steht der Weg,wie man auf die Euler-Lagrange-Gleichung
> kommt.
> Mir ist jedoch der Rechenschritt nicht klar, der in der
> Aufgabenstellung steht.
> f(x+dx,y+dy) wurde mit der Taylorentwicklung berechnet,
> jedoch nur nach der 1. Ordnung. Daher kein
> Gleichheitszeichen.
> Wieso steht dann bei der Differenz f(x+dx,y+dy)-f(x,y) ein
> gleichheitszeichen?
ja, das ist mathematisch nicht korrekt (zumindest nicht allgemein). Ich schätze, dass der Autor das [mm] $\approx$ [/mm] durch ein Gleichheitszeichen ersetzt hat, weil er keine Lust hatte die ganze Herleitung mit einem 'ungefähr' durchzuziehen. Sieht ja auch irgendwie komisch aus. Physiker lassen öfter mal 'fünfe gerade sein'
>
>
Gruß,
notinX
|
|
|
|