Varianz berechnen < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:25 Mo 11.09.2006 | Autor: | maki96 |
Aufgabe | Für 10 beobachtete Daten ergibt sich ein Mittelwert von 20 und eine Varianz von 16. Man berechne denMittelwert und die Varianz, wenn zu den Daten noch eine weitere Boebachtung mit dem Wert 27 dazukommt.
|
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Dieses Beispiel scheint ganz simpel zu sein, jedoch komm ich nicht dahinter wie man die neue Varianz ausrechnet? Gibts da viell. eine geeignete Formel? Danke für die Hilfe
Der neue Mittelwert ist leicht: (200+27)/11 = 20.6363
|
|
|
|
Hallo Maki!
Im Voraus mochte ich mich fur alle Schreibfehler entschuldigen - ich lerne erst Deutsch und dazu habe ich keine deutsche Tastatur :(
Du hast Recht mit dem neuen Mittelwert. Der ist tatsachlich leicht und du kannst es auch durch folgende Umformung berechnen:
[mm]\overline{x}[/mm] - der "alte" Mittelwert, also 20
[mm]\overline{y}[/mm] - der "neue" Mittelwert
[mm]x_{1}[/mm], ..., [mm]x_{n}[/mm] - "alte" beobachtete Daten
[mm]x_{n+1}[/mm] - die "neue" Beobachtung, also 27
n - die Anzahl der bisherigen Beobachtungen, also 10
[mm]\overline{x} = \bruch{x_{1}+...+x_{n}}{n} \qquad \Rightarrow \qquad x_{1}+...+x_{n} = n*\overline{x}[/mm]
[mm]\overline{y} = \bruch{x_{1}+...+x_{n}+x_{n+1}}{n+1} \qquad \Rightarrow \qquad \overline{y} = \bruch{n*\overline{x}+x_{n+1}}{n+1}[/mm]
also:
[mm]\overline{y} = \bruch{10*20+27}{10+1} = \bruch{227}{11} \approx 20,64[/mm]
Um die neue Varianz auszurechnen, braucht man ahnliches Verfahren ...doch die Umformung ist mehr kompliziert :-(
die Zeichen wie vorher, uberdies:
V(X) - die "alte" Varianz, also 16
V(Y) - die "neue" Varianz
[mm]V(X) = \bruch{\summe_{i=1}^{n}(x_{i}-\overline{x})^{2}}{n} = \bruch{(x_{1}-\overline{x})^{2}+...+(x_{n}-\overline{x})^{2}}{n} \qquad \Rightarrow \qquad (x_{1}-\overline{x})^{2}+...+(x_{n}-\overline{x})^{2} = n*V(X)[/mm]
Die Berechnung scheint unkompliziert zu sein, aber ...die "neue" Varianz "basiert" auf dem neuen Mittelwert :(
[mm]V(Y) = \bruch{(x_{1}-\overline{y})^{2}+...+(x_{n}-\overline{y})^{2}+(x_{n+1}-\overline{y})^{2}}{n+1}[/mm]
Wenn man mit 'c' die Differenz [mm]\overline{y}-\overline{x}[/mm] bezeichnet, dann [mm]\overline{y} = \overline{x}+c[/mm] und die Struktur [mm](x_{i}-\overline{y})^{2}[/mm] ist gleich [mm](x_{i}-\overline{x}-c)^{2}[/mm]
[mm]\summe_{i=1}^{n}(x_{i}-\overline{x}-c)^{2} = \summe_{i=1}^{n} x_{i}^{2}+\overline{x}^{2}+c^{2}-2x_{i}c+2\overline{x}c-2x_{i}\overline{x} = \summe_{i=1}^{n} x_{i}^{2}-2x_{i}\overline{x}+\overline{x}^{2}+c^{2}-2c(x_{i}-\overline{x})[/mm]
Das oben sieht verruckt aus, aber die Summe ([mm]\summe_{i=1}^{n}[/mm]) von:
a) [mm]x_{i}^{2}-2x_{i}\overline{x}+\overline{x}^{2} = (x_{i}-\overline{x})^{2}[/mm], also [mm]n*V(X)[/mm]
b) [mm]c^{2}[/mm] ist gleich [mm]n*c^{2}[/mm]
c) [mm]2c(x_{i}-\overline{x})[/mm] ist immer gleich Null
Jetzt ist alles leicht
[mm]V(Y) = \bruch{V(X)*n+n*c^{2}+(x_{n+1}-\overline{y})^{2}}{n+1} \approx 18,6[/mm]
Gruss!
Kiwi
|
|
|
|