Varianz Summierte Zufallsvar. < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es wird n [mm] \in \IN [/mm] mal eine faire Münze geworfen. Dabei bezeichne die Zufallsvariable [mm] X_i=\begin{cases} 0, & \mbox{für Zahl oben} \\ 1, & \mbox{für Kopf oben} \end{cases} [/mm] den Ausgang des Experiments nach dem i-ten Wurf für i [mm] \in [/mm] {1,...,n}.
Die Zufallsvariable [mm] S_n= \bruch{1}{n}\summe_{i=1}^{n}X_i [/mm] bezeichne die relative Häufigkeit von Kopf nach n Runden.
Berechnen sie Erwartungswert [mm] E(S_n) [/mm] und Varianz [mm] V(S_n). [/mm] |
Hallo,
ich studiere jetzt zwar schon 3 Semester, aber mit Stochastik kann ich mich einfach schon seit der Schule nicht anfreunden.
[mm] E(S_n)=E(\bruch{1}{n}\summe_{i=1}^{n}X_i)=\bruch{1}{n}E(\summe_{i=1}^{n}X_i)=\bruch{1}{n}*\bruch{n}{2}=\bruch{1}{2}.
[/mm]
Soweit alles klar.
[mm] V(S_n)= E(S_n^{2})-(E(S_n))^{2}=\bruch{1}{n^{2}}*E((\summe_{i=1}^{n}X_i)^{2})-(\bruch{1}{2})^{2}=
[/mm]
Jetzt ist mir aber überhaupt nicht klar, wie ich weiter machen muss, oder wie man das anders berechnen kann.
Vielen Dank für eure Hilfe!
Edit: Habe es herausgefunden:
[mm] V(S_n)= V(\bruch{1}{n}(\summe_{i=1}^{n}X_i)) =\bruch{1}{n^{2}} *V(\summe_{i=1}^{n} X_i) [/mm] = [mm] (X_i [/mm] unabhängig) [mm] \bruch{1}{n^{2}}*\summe_{i=1}^{n}V(X_i)=\bruch{1}{n^{2}}*\bruch{n}{4}=\bruch{1}{n*4}
[/mm]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:01 Do 22.01.2015 | Autor: | DieAcht |
Hallo RunOrVeith!
> Es wird n [mm]\in \IN[/mm] mal eine faire Münze geworfen. Dabei
> bezeichne die Zufallsvariable [mm]X_i=\begin{cases} 0, & \mbox{für Zahl oben} \\ 1, & \mbox{für Kopf oben} \end{cases}[/mm]
> den Ausgang des Experiments nach dem i-ten Wurf für i [mm]\in[/mm]
> {1,...,n}.
> Die Zufallsvariable [mm]S_n= \bruch{1}{n}\summe_{i=1}^{n}X_i[/mm]
> bezeichne die relative Häufigkeit von Kopf nach n Runden.
>
> Berechnen sie Erwartungswert [mm]E(S_n)[/mm] und Varianz [mm]V(S_n).[/mm]
>
> Hallo,
>
> ich studiere jetzt zwar schon 3 Semester, aber mit
> Stochastik kann ich mich einfach schon seit der Schule
> nicht anfreunden.
>
> [mm]E(S_n)=E(\bruch{1}{n}\summe_{i=1}^{n}X_i)=\bruch{1}{n}E(\summe_{i=1}^{n}X_i)=\bruch{1}{n}*\bruch{n}{2}=\bruch{1}{2}.[/mm]
Richtig.
> Soweit alles klar.
> [mm]V(S_n)= E(S_n^{2})-(E(S_n))^{2}=\bruch{1}{n^{2}}*E((\summe_{i=1}^{n}X_i)^{2})-(\bruch{1}{2})^{2}=[/mm]
> Jetzt ist mir aber überhaupt nicht klar, wie ich weiter
> machen muss, oder wie man das anders berechnen kann.
> Vielen Dank für eure Hilfe!
>
> Edit: Habe es herausgefunden:
> [mm]V(S_n)= V(\bruch{1}{n}(\summe_{i=1}^{n}X_i)) =\bruch{1}{n^{2}} *V(\summe_{i=1}^{n} X_i)[/mm]
> = [mm](X_i[/mm] unabhängig)
> [mm]\bruch{1}{n^{2}}*\summe_{i=1}^{n}V(X_i)=\bruch{1}{n^{2}}*\bruch{n}{4}=\bruch{1}{n*4}[/mm]
Richtig.
Gruß
DieAcht
|
|
|
|