www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Urbild
Urbild < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urbild: Frage zur Urbildmenge (Bsp)
Status: (Frage) beantwortet Status 
Datum: 16:33 Mo 19.11.2012
Autor: Peeter123

Hallo,

Auf Wikipedia stehen zum Thema Urbild ein paar Beispiele:

Für die Funktion [mm] f\colon \mathbb{Z} \to \mathbb{Z} [/mm] (ganze Zahlen) mit [mm] f(x)=x^2 [/mm] gilt:


    [mm] f^{-1}(4) [/mm] = [mm] \{2,-2\} [/mm]
    [mm] f^{-1}(0) [/mm] = [mm] \{0\} [/mm]
    [mm] f^{-1}(3) [/mm] = [mm] \emptyset [/mm]
    [mm] f^{-1}(-1) [/mm] = [mm] \emptyset [/mm]
    [mm] f^{-1}(\{1,4\}) [/mm] = [mm] \{-2,-1,1,2\} [/mm]


Diese sind mir so erstmal klar.

Was ist aber mit folgendem Beispiel (selbst ausgedacht)?:

    [mm] f^{-1}(\{3,4\}) [/mm] = [mm] \emptyset [/mm]

oder

    [mm] f^{-1}(\{3,4\}) [/mm] = [mm] \{2,-2\} [/mm]


Was ist richtig?

        
Bezug
Urbild: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Mo 19.11.2012
Autor: schachuzipus

Hallo Peeter123,


> Hallo,
>  
> Auf Wikipedia stehen zum Thema Urbild ein paar Beispiele:
>  
> Für die Funktion [mm]f\colon \mathbb{Z} \to \mathbb{Z}[/mm] (ganze
> Zahlen) mit [mm]f(x)=x^2[/mm] gilt:
>  
>
> [mm]f^{-1}(4)[/mm] = [mm]\{2,-2\}[/mm]
>      [mm]f^{-1}(0)[/mm] = [mm]\{0\}[/mm]
>      [mm]f^{-1}(3)[/mm] = [mm]\emptyset[/mm]
>      [mm]f^{-1}(-1)[/mm] = [mm]\emptyset[/mm]
>      [mm]f^{-1}(\{1,4\})[/mm] = [mm]\{-2,-1,1,2\}[/mm]
>
>
> Diese sind mir so erstmal klar.
>  
> Was ist aber mit folgendem Beispiel (selbst ausgedacht)?:
>  
> [mm]f^{-1}(\{3,4\})[/mm] = [mm]\emptyset[/mm]
>  
> oder
>  
> [mm]f^{-1}(\{3,4\})[/mm] = [mm]\{2,-2\}[/mm]
>  
>
> Was ist richtig?

Na, was meinst du denn?

Das Urbild einer Menge [mm]M\subset B[/mm] unter der Abbildung [mm]f:A\to B[/mm] ist definiert als [mm]f^{-1}(M):=\{x\in A:f(x)\in M\}[/mm]

Die Menge [mm]M[/mm] ist in deinem Bsp. [mm]M=\{3,4\}[/mm]

Nun gibt es doch ein x (sogar zwei x'e), mit [mm]f(x)\in M[/mm]

Nämlich die aus der zweiten Variante:

[mm]x=\pm 2[/mm] liefert [mm]f(x)=4\in M[/mm]

Dass das andere Element (3) von M nicht getroffen wird, macht nix.

Fazit: Variante 2 stimmt ;-)

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]