Untervektorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:30 Di 06.08.2013 | Autor: | Lisa12 |
Hi, ich hab eine Frage und hoffe ihr könnt mir helfen!
Y soll die Menge aller 2x2 Matrizen sein für die [mm] A^2=A [/mm] gilt. Jetzt soll man prüfen ob Y Untervektorraum ist!
Jetzt hab ich versucht ein Gegenbeispiel zu finden!
Für [mm] \pmat{ 1 & 0 \\ 0 & 1 } [/mm] gilt ja [mm] A^2=A [/mm] also [mm] \in [/mm] Y
Jetzt müsste ja [mm] k*\pmat{ 1 & 0 \\ 0 & 1 } [/mm] auch [mm] \in [/mm] Y sein ABER es ist ja
[mm] (\pmat{ k & 0 \\ 0 & k })^2=\pmat{ k^2 & 0 \\ 0 & k^2 }\not\in [/mm] Y
Denkt ihr das würde reichen?? Oder bin ich auf dem ganz falschen Dampfer und es ist Untervektorraum?
|
|
|
|
> Hi, ich hab eine Frage und hoffe ihr könnt mir helfen!
> Y soll die Menge aller 2x2 Matrizen sein für die [mm]A^2=A[/mm]
> gilt.
> Jetzt soll man prüfen ob Y Untervektorraum ist!
Hallo,
an dieser Stelle solltest Du schon sagen, wovon es ggf. ein Untervektorraum sein sollte.
Ich denke mal, es ist zu untersuchen, ob es ein Unterraum des [mm] \IR-VRes [/mm] der [mm] 2\times [/mm] 2-Matrizen mit Einträgen aus [mm] \IR [/mm] ist.
> Jetzt hab ich versucht ein Gegenbeispiel zu finden!
Gute Idee.
> Für [mm]\pmat{ 1 & 0 \\ 0 & 1 }[/mm] gilt ja [mm]A^2=A[/mm] also [mm]\in[/mm] Y
Ja.
> Jetzt müsste ja [mm]k*\pmat{ 1 & 0 \\ 0 & 1 }[/mm] auch [mm]\in[/mm] Y sein
> ABER es ist ja
> [mm](\pmat{ k & 0 \\ 0 & k })^2=\pmat{ k^2 & 0 \\ 0 & k^2 }\not\in[/mm]
> Y
> Denkt ihr das würde reichen??
Das k überzeugt nicht.
Gib eine konkrete Zahl an.
Z.B. so:
es ist [mm] E:=\pmat{ 1 & 0 \\ 0 & 1 }\in [/mm] Y,
jedoch ist [mm] 2E\not\in [/mm] Y,
denn [mm] (2E)^2=4E\not=2E.
[/mm]
> Oder bin ich auf dem ganz
> falschen Dampfer und es ist Untervektorraum?
Du bist auf dem richtigen Dampfer.
LG Angela
|
|
|
|