www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Unterräume
Unterräume < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume: Aufgabenhilfe
Status: (Frage) beantwortet Status 
Datum: 12:58 Mi 09.12.2009
Autor: Reen1205

Aufgabe
Wenn es sich um einen Unterraum handelt, weisen Sie die beiden Krieterien nach!
[mm]U=\left\{(x,y,z)^T: 3x+2y+z=0\right\}[/mm]

Ich habe diese Frage in keinem anderen Forum gestellt!

So Bedingung eins ist wenn
(1) [mm] \vec v, \vec w \subset U[/mm] dann ist auch [mm] \vec v + \vec w\subset U[/mm]
und
(2) [mm]\alpha\subset\IR[/mm] und [mm]\vec w \subset U[/mm] dann ist auch [mm]\alpha*\vec w\subset U[/mm]

(1) habe ich hinbekommen
(2) [mm]\alpha*\vec w\subset U[/mm]
Der Vektor erfüllt ja diese Gleichung [mm]3w_1+2w_2+w_3=0[/mm] und wenn ich den jetzt mit dem alpha multipliziere habe ich ja folgende Gleichung [mm] 3\alpha w_1+2\alpha w_3+\alpha w_3[/mm] habe ich es dann bewiesen wenn ich das Alpha ausklammere?
[mm] \alpha*(3w_1+2w_2+w_3)=0[/mm]
Und da ich weiß, das [mm]3w_1+2w_2+w_3=0[/mm] ist, ist damit auch klar, dass  [mm]\alpha\vec w[/mm] auch im Unterraum liegt?

        
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 Mi 09.12.2009
Autor: fred97


> Wenn es sich um einen Unterraum handelt, weisen Sie die
> beiden Krieterien nach!
>  [mm]U=\left\{(x,y,z)^T: 3x+2y+z=0\right\}[/mm]
>  Ich habe diese
> Frage in keinem anderen Forum gestellt!
>  
> So Bedingung eins ist wenn
> (1) [mm]\vec v, \vec w \subset U[/mm] dann ist auch [mm]\vec v + \vec w\subset U[/mm]
> und
>  (2) [mm]\alpha\subset\IR[/mm] und [mm]\vec w \subset U[/mm] dann ist auch
> [mm]\alpha*\vec w\subset U[/mm]
>  
> (1) habe ich hinbekommen
>  (2) [mm]\alpha*\vec w\subset U[/mm]
>  Der Vektor erfüllt ja diese
> Gleichung [mm]3w_1+2w_2+w_3=0[/mm] und wenn ich den jetzt mit dem
> alpha multipliziere habe ich ja folgende Gleichung [mm]3\alpha w_1+2\alpha w_3+\alpha w_3[/mm]
> habe ich es dann bewiesen wenn ich das Alpha ausklammere?
>  [mm]\alpha*(3w_1+2w_2+w_3)=0[/mm]
>  Und da ich weiß, das [mm]3w_1+2w_2+w_3=0[/mm] ist, ist damit auch
> klar, dass  [mm]\alpha\vec w[/mm] auch im Unterraum liegt?

Ja, richtig

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]