Untermannigfaltigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:27 Mo 02.07.2007 | Autor: | Docy |
Aufgabe | Die Funktionen [mm] f,g:\IR^3 \to \IR [/mm] seien definiert durch
[mm] f(x,y,z)=x^2+xy-y-z [/mm]
[mm] g(x,y,z)=2x^2+3xy-2y-3z.
[/mm]
Man zeige, dass
[mm] C:=\{(x,y,z)\in \IR^3|f(x,y,z)=g(x,y,z)=0\}
[/mm]
eine eindimensionale Untermannigfaltigkeit des [mm] \IR^3 [/mm] ist, und dass
[mm] \phi: \IR \to \IR^3 [/mm] , [mm] \phi(t)=(t,t^2,t^3) [/mm]
eine globale Parameterdarstellung von C ist. |
Hallo alle zusammen,
ich habe die Lösung für diese Aufgabe im Übungsbuch zur Analysis 2 von Otto Forster gefunden, die da folgendermaßen lautet:
Wir setzen [mm] C_1 :=\{(t,t^2,t^3)|t \in \IR\}.
[/mm]
Da [mm] f(t,t^2,t^3)=g(t,t^2,t^3)=0 \forall t\in\IR, [/mm] folgt
[mm] C_1 \subset C=\{(x,y,z)\in \IR^3|f(x,y,z)=g(x,y,z)=0\}.
[/mm]
Zum Beweis der umgekehrten Implikation C [mm] \subset C_1 [/mm] stellen wir fest, dass
[mm] 3f(x,y,z)-g(x,y,z)=x^2-y [/mm] und
2f(x,y,z)-g(x,y,z)=-xy+z.
Für jeden Punkt (x,y,z) [mm] \in [/mm] C gilt also [mm] y=x^2 [/mm] und [mm] z=xy=x^3, [/mm] der Punkt hat also die Gestalt [mm] (x,x^2,x^3) [/mm] , d.h. er liegt auf [mm] C_1. [/mm] Damit ist bewiesen, dass [mm] C=C_1.
[/mm]
Bis hierhin ist alles klar, jetzt kommt der Teil, den ich nicht verstehe. Es heißt weiter:
Die Gradienten
grad(f(x,y,z))= (2x+y, x-1, -1)
grad(g(x,y,z))=(4x+3y, 3x-2, -3)
sind in jedem Punkt (x,y,z) [mm] \in [/mm] C linear unabhängig, also ist C eine eindimensionale Untermannigfaltigkeit von [mm] \IR^3.
[/mm]
Kann mir vielleicht jemand erklären, wozu man überhaupt die Gradienten ausgerechnet hat??? Wäre sehr dankbar für eine Antwort.
Gruß
Docy
|
|
|
|
Hallo Docy!
Ich weiß nicht ob ich da hundertprozentig richtig liege! Kenn mich da nicht mehr ganz so gut aus! Aber ich glaube, dass hat folgenden Grund:
Ich weiss nicht ob du bereits weißt, dass [mm] M \subset \IR^{n} [/mm] genau dann eine k-dim. Untermannigfaltigkeit ist, wenn unter anderem M als Nullstellenmenge dargestellt werden kann. Also wenn gilt:
Für jedes [mm] x_{0} \in M [/mm] gibt es offene Umgebung [mm]U \subset \IR^{n} [/mm] von [mm] x_{0} [/mm] und stetig differenzierbare Funktionen [mm] g_{j}:U \to \IR, j=1,....,n-k, [/mm] so dass
[mm] M \cap U = \{ x \in U : g_{1}(x)=g_{2}(x)=...=g_{n-k}(x)=0 \} [/mm] und [mm] \forall x \in M \cap U [/mm] ist [mm] rang(\bruch{\partial(g_{1},....,g_{n-k}}{\partial(x_{1},....x_{n})}(x))=n-k [/mm], also der Rang der Jacobimatrix = n-k.
So nun zu deiner Aufgabe! Die Parametrisierung hast du gezeigt, bleibt zu zeigen, dass C tatsächlich eine 1 dimensionale UMFK.
Dazu nutzt du den oben angeführten Satz (Charakteristik von UMFK):
Bei dir ist nun n=3, k=1 und die stetig differenzierbaren Funktionen reduzieren sich bei dir auf 2, nämlich g und f!
Du hast weiterhin bereits gezeigt, dass gilt:[mm] C=C \cap \IR^{3} =\{ (x_{1},x_{2},x_{3}) \in \IR^{3}:g(x)=f(x)=0 \} [/mm].
Damit C eine 1 dimensionale Untermannigfaltigkeit ist, bleibt zu zeigen, dass [mm]\forall x \in C[/mm] die Jacobi-Matrix Rang 2 hat.
Die Spalten der Jacobi Matrix sind aber gerade die Gradienten von g bzw. f und da diese [mm]\forall x \in C[/mm] offensichtlich linear unabhängig sind folgt somit, dass die Jacobi Matrix Rang 2=3-1=n-k hat (Lineare Algebra) und somit dass C eine 1-dimensionale Untermannigfaltigkeit von [mm]\IR^{3}[/mm] ist!
Ich hoffe dass hilft dir!
Gruß! Frank
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:06 Di 03.07.2007 | Autor: | Docy |
Hallo Deuterinomium,
danke für deine Antwort, sie ist super! Jetzt ist alles klar.
Gruß
Docy
|
|
|
|