www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Untergruppen
Untergruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untergruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 Do 16.07.2009
Autor: moerni

Hallo,
ich soll zeigen:
Jede endlich erzeugte Untergruppe der additiven Gruppe Q/Z ist endlich und zyklisch.

Dass jede endlich erzeugte Untergruppe der additiven Gruppe Q/Z zyklisch ist, konnte ich nachweisen. Aber warum sie endlich ist, kann ich nicht beweisen. Mein "Ansatz":
Sei U [mm] \subset [/mm] Q/Z, seien [mm] x_1, [/mm] ... , [mm] x_s \in [/mm] Q/Z und [mm] U=\{x \in Q/Z: \exists p_i \in Z: x=p_1x_1+...+p_sx_s\} [/mm]
warum gibt es nur endlich viele x?
Über einen Tipp wäre ich sehr dankbar.

        
Bezug
Untergruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 05:11 Fr 17.07.2009
Autor: felixf

Hallo!

>  ich soll zeigen:
>  Jede endlich erzeugte Untergruppe der additiven Gruppe Q/Z
> ist endlich und zyklisch.
>  
> Dass jede endlich erzeugte Untergruppe der additiven Gruppe
> Q/Z zyklisch ist, konnte ich nachweisen.

Dann hast du den Grossteil geschafft.

> Aber warum sie
> endlich ist, kann ich nicht beweisen. Mein "Ansatz":
>  Sei U [mm]\subset[/mm] Q/Z, seien [mm]x_1,[/mm] ... , [mm]x_s \in[/mm] Q/Z und [mm]U=\{x \in Q/Z: \exists p_i \in Z: x=p_1x_1+...+p_sx_s\}[/mm]

Da du weisst das die Untergruppe zyklisch ist, reicht es zu zeigen, dass der Generator endliche Ordnung hat. Du nimmst also ein beliebiges Element aus [mm] $\IQ/\IZ$, [/mm] etwa [mm] $\frac{p}{q} [/mm] + [mm] \IZ$, [/mm] und musst ein $n [mm] \in \IN$ [/mm] finden mit $n [mm] (\frac{p}{q} [/mm] + [mm] \IZ) [/mm] = [mm] \IZ$, [/mm] also mit $n [mm] \frac{p}{q} \in \IZ$. [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]