www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Unterdeterminate
Unterdeterminate < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterdeterminate: Beweis
Status: (Frage) beantwortet Status 
Datum: 19:51 Do 21.06.2007
Autor: muellerin

Aufgabe
Beweise: Für A ∈ Km×n gilt RangA = r, falls A eine r-reihige Unterdeterminante
ungleich Null besitzt und falls im Falle r < min{m, n} alle (r + 1)-reihigen Unterdeterminanten
von A gleich Null sind.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
Hallo liebes Mathe Forum!

Ich verzweifle gerade an einer Aufgabe, vielleicht kann mir ja jemand dabei helfen?
Ich soll zeigen, dass:

        
Bezug
Unterdeterminate: Antwort
Status: (Antwort) fertig Status 
Datum: 11:42 Fr 22.06.2007
Autor: Somebody


>  Hallo liebes Mathe Forum!
>  
> Ich verzweifle gerade an einer Aufgabe, vielleicht kann mir
> ja jemand dabei helfen?
>  Ich soll zeigen, dass:

> Beweise: Für A ∈ Km×n gilt RangA = r, falls A eine
> r-reihige Unterdeterminante
>  ungleich Null besitzt und falls im Falle r < min{m, n}
> alle (r + 1)-reihigen Unterdeterminanten
>  von A gleich Null sind.

Gibt es eine [mm]r[/mm]-reihige Unterdeterminante [mm]\neq 0[/mm], so sind die Spalten von [mm]A[/mm], aus denen diese Unterdeterminante herausgegriffen worden ist, jedenfalls linear-unabhängig. Also muss gelten [mm]\text{Rang}(A) \geq r[/mm].
Wir müssen noch zeigen, dass [mm]\text{Rang}(A)\leq r[/mm] ist, falls jede [mm]r+1[/mm]-reihige Unterdeterminante [mm]=0[/mm] ist. Indirekter Beweis: Angenommen es wäre [mm]\text{Rang}(A)\geq r+1[/mm], dann gäbe es also [mm]r+1[/mm] linear-unabhängige Spaltenvektoren von [mm]A[/mm]. Da aber Spaltenrang gleich Zeilenrang ist (deshalb spricht man ja bei einer Matrix einfach nur kurz vom "Rang" der Matrix), muss es in der durch diese [mm]r+1[/mm] Spaltenvektoren von [mm]A[/mm] gebildeten Untermatrix auch [mm]r+1[/mm] linear-unabhängige Zeilenvektoren geben. Die aus diesen [mm]r+1[/mm] linear-unabhängigen Zeilenvektoren der linear-unabhängigen [mm]r+1[/mm] Spaltenvektoren von [mm]A[/mm] gebildete quadratische Untermatrix von [mm]A[/mm] ist also regulär und hätte somit eine Determinante [mm]\neq 0[/mm]. Da es aber, nach Voraussetzung über [mm]A[/mm], keine [mm]r+1[/mm]-reihige Unterdeterminante [mm]\neq 0[/mm] von [mm]A[/mm] gibt, muss unsere Annahme, dass es [mm]r+1[/mm] linear-unabhängige Spaltenvektoren von [mm]A[/mm] gibt, falsch sein.
Insgesamt haben wir damit gezeigt: [mm]r\leq \text{Rang}(A)\leq r[/mm], also ist [mm]\text{Rang}(A)=r[/mm].

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]