www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Ungleichung und Betrag
Ungleichung und Betrag < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung und Betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 Di 30.11.2010
Autor: Kugelrund

Aufgabe
Ermitteln Sie alle reellen Losungen der folgenden Gleichungen/Ungleichungen und skizzieren
Sie die entsprechenden Bereiche auf dem Zahlenstrahl bzw. in der Ebene:
a) [mm] |x-1|+|y-1|\le1 [/mm]

[mm] b)\wurzel{3x-6}-\wurzel{x-3}=2 [/mm]

Also muss ich bei a) nach x oder y auflösen ???

Und bei der b) habe ich das hier:


[mm] \wurzel{3x-6}-\wurzel{x-3}=2 [/mm]       ^{2}

3x-6-x-3=4

2x-9=4

2x=13

x= 6,5

Ist das so richtig?



iCH DANKE EUCH SEHR.......

        
Bezug
Ungleichung und Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Di 30.11.2010
Autor: fencheltee


> Ermitteln Sie alle reellen Losungen der folgenden
> Gleichungen/Ungleichungen und skizzieren
>  Sie die entsprechenden Bereiche auf dem Zahlenstrahl bzw.
> in der Ebene:
>  a) [mm]|x-1|+|y-1|\le1[/mm]
>  
> [mm]b)\wurzel{3x-6}-\wurzel{x-3}=2[/mm]
>  Also muss ich bei a) nach x oder y auflösen ???

eigentlich egal, aber wenn man nach y auflöst, kann mans intuitiver zeichnen

>  
> Und bei der b) habe ich das hier:
>  
>
> [mm]\wurzel{3x-6}-\wurzel{x-3}=2[/mm]       ^{2}

[mm] (a-b)^2\not=a^2-b^2 [/mm]

>  
> 3x-6-x-3=4
>  
> 2x-9=4
>  
> 2x=13
>  
> x= 6,5
>  
> Ist das so richtig?

falscher gehts kaum ;)

>  
>
>
> iCH DANKE EUCH SEHR.......

gruß tee

Bezug
        
Bezug
Ungleichung und Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Di 30.11.2010
Autor: Pia90

Ich würde deine a) wie folgt lösen:
[mm] \wurzel{3x-6}-\wurzel{x-3}=2 [/mm]
also erstmal würd ich angeben, dass die diskrimanten nicht negativ werden dürfen und das für x angeben... damit komme ich darauf, dass es nur für x>3 reelle Lsg. geben kann.
ich hätte dann zunächst [mm] \wurzel{x-3} [/mm] auf die andere Seite geholt... sieht meiner meinung nach schöner aus ^^
[mm] \wurzel{3x-6}-\wurzel{x-3}=2 \gdw \wurzel{3x-6}=2 [/mm]
+ [mm] \wurzel{x-3} [/mm]
Dann das ganze quadrieren
[mm] \gdw [/mm] 3x-6 = [mm] (3+\wurzel{x-3})^2 [/mm] (ACHTUNG: binomische Formel)
das dann schließlich nach x auflösen
Ergibt nach meiner Rechnung
x = [mm] \bruch{2\* \wurzel{6} +11}{2} [/mm] oder x = [mm] \bruch{-2\* \wurzel{6} +11}{2} [/mm]

Jetzt die zwei Lösungen noch in die Gleichung einsetzen und überprüfen, ob es sich um Scheinlsg. handelt, die beim Quadrieren entstanden sind.

Ergibt dann, dass nur x = [mm] \bruch{2\* \wurzel{6} +11}{2} [/mm]
eine reelle Lsg. der Gleichung ist.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]