www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Ungleichung beweisen
Ungleichung beweisen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Mo 30.03.2009
Autor: Blueplanet

Aufgabe
Beweisen Sie folgende Ungleichung für alle 0<m<n

[mm] \bruch{n-m}{n} [/mm] < ln [mm] \bruch{n}{m} [/mm] < [mm] \bruch{n-m}{m} [/mm]

Ich vermute starkt dass hier der Mittelwertsatz angewendet werden kann und soll, kriege das aber nicht hin.



        
Bezug
Ungleichung beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 Mo 30.03.2009
Autor: Marcel

Hallo,

> Beweisen Sie folgende Ungleichung für alle 0<m<n
>  
> [mm]\bruch{n-m}{n}[/mm] < ln [mm]\bruch{n}{m}[/mm] < [mm]\bruch{n-m}{m}[/mm]
>  Ich vermute starkt dass hier der Mittelwertsatz angewendet
> werden kann und soll, kriege das aber nicht hin.

bekanntlich gilt ja [mm] $\ln(n/m)=\ln(n)-\ln(m)\,.$ [/mm] Damit ist
[mm] $$\frac{n-m}{n} [/mm] < [mm] \ln\left(\frac{n}{m}\right)$$ [/mm]
wegen $n-m > [mm] 0\,$ [/mm] äquivalent zu
[mm] $$(\star)\;\;\;\frac{1}{n} [/mm] < [mm] \frac{\ln(n)-\ln(m)}{n-m}\,.$$ [/mm]

(Bzw. Du wirst oder solltest Dir klarmachen, dass die ganze obige Ungleichungskette äquivalent zu
[mm] $$\frac{1}{n} [/mm] < [mm] \frac{\ln(n)-\ln(m)}{n-m} [/mm] < [mm] \frac{1}{m}$$ [/mm]
ist.)

Um die letzte Ungleichung [mm] $(\star)$ [/mm] zu beweisen:
Betrachte $x [mm] \mapsto \ln(x)$ [/mm] auf $[m,n]$ (beachte $0 < m < [mm] n\,$ [/mm] nach Voraussetzung) und wende dort nun den MWS an. Danach benutze, dass [mm] $\frac{d}{dx}\;\ln(x)=\frac{1}{x}$ [/mm] und dass $x [mm] \mapsto \frac{1}{x}$ [/mm] streng monoton fallend auf dem offenen Intervall [mm] $(0,\infty)$ [/mm] ist. Damit bekommst Du nämlich [mm] $\frac{1}{n} [/mm] < [mm] \frac{1}{\xi} [/mm] < [mm] \frac{1}{m}$ [/mm] für alle [mm] $\xi \in (m,n)\,.$ [/mm]
Wenn Du das nun einfach noch 'zusammenbastelst', bist Du auch schon fertig.

Gruß,
Marcel

Bezug
                
Bezug
Ungleichung beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:07 Mo 30.03.2009
Autor: abakus


> Hallo,
>  
> > Beweisen Sie folgende Ungleichung für alle 0<m<n
>  >  
> > [mm]\bruch{n-m}{n}[/mm] < ln [mm]\bruch{n}{m}[/mm] < [mm]\bruch{n-m}{m}[/mm]
>  >  Ich vermute starkt dass hier der Mittelwertsatz
> angewendet
> > werden kann und soll, kriege das aber nicht hin.
>  
> bekanntlich gilt ja [mm]\ln(n/m)=\ln(n)-\ln(m)\,.[/mm] Damit ist
> [mm]\frac{n-m}{n} < \ln\left(\frac{n}{m}\right)[/mm]
>  wegen [mm]n-m > 0\,[/mm]
> äquivalent zu
>  [mm](\star)\;\;\;\frac{1}{n} < \frac{\ln(n)-\ln(m)}{n-m}\,.[/mm]
>  
> (Bzw. Du wirst oder solltest Dir klarmachen, dass die ganze
> obige Ungleichungskette äquivalent zu
>  [mm]\frac{1}{n} < \frac{\ln(n)-\ln(m)}{n-m} < \frac{1}{m}[/mm]
>  
> ist.)
>  
> Um die letzte Ungleichung [mm](\star)[/mm] zu beweisen:
>  Betrachte [mm]x \mapsto \ln(x)[/mm] auf [mm][m,n][/mm] (beachte [mm]0 < m < n\,[/mm]
> nach Voraussetzung) und wende dort nun den MWS an. Danach
> benutze, dass [mm]\frac{d}{dx}\;\ln(x)=\frac{1}{x}[/mm] und dass [mm]x \mapsto \frac{1}{x}[/mm]
> streng monoton fallend auf dem offenen Intervall [mm](0,\infty)[/mm]
> ist. Damit bekommst Du nämlich [mm]\frac{1}{n} < \frac{1}{\xi} < \frac{1}{m}[/mm]
> für alle [mm]\xi \in (m,n)\,.[/mm]
>  Wenn Du das nun einfach noch
> 'zusammenbastelst', bist Du auch schon fertig.

Hallo, der zweite Teil der Ungleichng folgt auch aus ln x [mm] \le [/mm] x-1.
(y=x-1 ist die Tangente an y=ln x im Punkt (1|0), und wegen des Krümmungsverhaltens liegen alle anderen Punkte des Graphen von ln x unter dieser Tangente.
Gruß Abakus

>  
> Gruß,
>  Marcel


Bezug
                        
Bezug
Ungleichung beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:56 Di 31.03.2009
Autor: Marcel

Hallo,

> > Hallo,
>  >  
> > > Beweisen Sie folgende Ungleichung für alle 0<m<n
>  >  >  
> > > [mm]\bruch{n-m}{n}[/mm] < ln [mm]\bruch{n}{m}[/mm] < [mm]\bruch{n-m}{m}[/mm]
>  >  >  Ich vermute starkt dass hier der Mittelwertsatz
> > angewendet
> > > werden kann und soll, kriege das aber nicht hin.
>  >  
> > bekanntlich gilt ja [mm]\ln(n/m)=\ln(n)-\ln(m)\,.[/mm] Damit ist
> > [mm]\frac{n-m}{n} < \ln\left(\frac{n}{m}\right)[/mm]
>  >  wegen [mm]n-m > 0\,[/mm]
> > äquivalent zu
>  >  [mm](\star)\;\;\;\frac{1}{n} < \frac{\ln(n)-\ln(m)}{n-m}\,.[/mm]
>  
> >  

> > (Bzw. Du wirst oder solltest Dir klarmachen, dass die ganze
> > obige Ungleichungskette äquivalent zu
>  >  [mm]\frac{1}{n} < \frac{\ln(n)-\ln(m)}{n-m} < \frac{1}{m}[/mm]
>  
> >  

> > ist.)
>  >  
> > Um die letzte Ungleichung [mm](\star)[/mm] zu beweisen:
>  >  Betrachte [mm]x \mapsto \ln(x)[/mm] auf [mm][m,n][/mm] (beachte [mm]0 < m < n\,[/mm]
> > nach Voraussetzung) und wende dort nun den MWS an. Danach
> > benutze, dass [mm]\frac{d}{dx}\;\ln(x)=\frac{1}{x}[/mm] und dass [mm]x \mapsto \frac{1}{x}[/mm]
> > streng monoton fallend auf dem offenen Intervall [mm](0,\infty)[/mm]
> > ist. Damit bekommst Du nämlich [mm]\frac{1}{n} < \frac{1}{\xi} < \frac{1}{m}[/mm]
> > für alle [mm]\xi \in (m,n)\,.[/mm]
>  >  Wenn Du das nun einfach
> noch
> > 'zusammenbastelst', bist Du auch schon fertig.
>  Hallo, der zweite Teil der Ungleichng folgt auch aus ln x
> [mm]\le[/mm] x-1.
>  (y=x-1 ist die Tangente an y=ln x im Punkt (1|0), und
> wegen des Krümmungsverhaltens liegen alle anderen Punkte
> des Graphen von ln x unter dieser Tangente.
>  Gruß Abakus

ohja, das wäre durchaus ein schöner Weg. Den kann man auch auf die erste Ungleichung übertragen, man überzeuge sich, dass
$$1-x < [mm] \ln(1/x)\;\;\;\text{ auf } [/mm] (0,1)$$
gilt.

Oder man nehme einfach, was Du oben ja herausgefunden hast, die Ungleichung
[mm] $$\ln(x) [/mm] < [mm] x-1\;\;\;\text{auf }(1,\infty)$$ [/mm]
und beachte, dass $x [mm] \in (1,\infty) \gdw y=\frac{1}{x} \in [/mm] (0,1)$ sowie [mm] $-\ln(1/y)=\ln(y)$ [/mm] für $y > [mm] 0\,.$ [/mm]

Gruß,
Marcel

Bezug
                
Bezug
Ungleichung beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:03 Di 31.03.2009
Autor: Blueplanet


> benutze, dass [mm]\frac{d}{dx}\;\ln(x)=\frac{1}{x}[/mm] und dass [mm]x \mapsto \frac{1}{x}[/mm]
> streng monoton fallend auf dem offenen Intervall [mm](0,\infty)[/mm]
> ist. Damit bekommst Du nämlich [mm]\frac{1}{n} < \frac{1}{\xi} < \frac{1}{m}[/mm]
> für alle [mm]\xi \in (m,n)\,.[/mm]

An genau dieser Stelle hakt es etwas. Wie kommt hier das "echt größer als" zustande? Warum nicht "größer gleich"? [mm]\xi \in (m,n)\,.[/mm] bedeutet doch auch, dass [mm] \xi=m [/mm] oder [mm] \xi=n [/mm] möglich wäre?

Bezug
                        
Bezug
Ungleichung beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:08 Di 31.03.2009
Autor: fred97


> > benutze, dass [mm]\frac{d}{dx}\;\ln(x)=\frac{1}{x}[/mm] und dass [mm]x \mapsto \frac{1}{x}[/mm]
> > streng monoton fallend auf dem offenen Intervall [mm](0,\infty)[/mm]
> > ist. Damit bekommst Du nämlich [mm]\frac{1}{n} < \frac{1}{\xi} < \frac{1}{m}[/mm]
> > für alle [mm]\xi \in (m,n)\,.[/mm]
>  
> An genau dieser Stelle hakt es etwas. Wie kommt hier das
> "echt größer als" zustande? Warum nicht "größer gleich"?
> [mm]\xi \in (m,n)\,.[/mm] bedeutet doch auch, dass [mm]\xi=m[/mm] oder [mm]\xi=n[/mm]
> möglich wäre?


Nein.


$ [mm] \xi \in (m,n)\, [/mm] $  [mm] \gdw [/mm] $m< [mm] \xi [/mm] <n$

Es ist

(m,n) = { x [mm] \in \IR: [/mm] m<x<n }

und

[m,n] = { x [mm] \in \IR: [/mm] m [mm] \le [/mm] x [mm] \le [/mm] n }

FRED

Bezug
                                
Bezug
Ungleichung beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:28 Di 31.03.2009
Autor: Blueplanet

Ahaaaaaa!
Kannte die Schreibweise mit runden Klammern nicht, weshalb mich auch der Wikipediaartikel eher verwirrt hat.

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]