www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Ungleichung
Ungleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Sa 23.10.2010
Autor: melisa1

Aufgabe
Zeigen Sie, dass [mm] |\bruch{1}{x+1}- \bruch{1}{y+1}|\le [/mm] |x-y|, für alle x,y [mm] \ge [/mm] 0

Hallo,

ich habe versucht, dass mit der Umgekehrten Dreiecksungleichung zu lösen.

[mm] |x-y|\ge [/mm] ||x|-|y|| (und da x, y [mm] \ge [/mm] 0 sind kann ich die betragsstriche weglassen)= |x-y|  [mm] \ge |\bruch{1}{x}-\bruch{1}{y}|(und [/mm] da [mm] x\le [/mm] x+1) [mm] \ge |\bruch{1}{x+1}- \bruch{1}{y+1}| [/mm]


stimmt das so?

Danke im voraus


Lg Melisa

        
Bezug
Ungleichung: Brüche zusammenfassen
Status: (Antwort) fertig Status 
Datum: 17:46 Sa 23.10.2010
Autor: Loddar

Hallo Melisa!


So ganz kann ich Deiner Argumentation nicht folgen ... [kopfkratz3]


Bringe einfach die beiden Brüche auf einem Bruch und fasse zusammen. Dann liegt die Behauptung auch schon auf der Hand.


Gruß
Loddar



Bezug
                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Sa 23.10.2010
Autor: melisa1

Hallo Loddar


danke erstmal für deine Antwort.



>  
>
> Bringe einfach die beiden Brüche auf einem Bruch und fasse
> zusammen. Dann liegt die Behauptung auch schon auf der
> Hand.
>  
>


Meinst du das so:

[mm] |\bruch{1}{x+1}- \bruch{1}{y+1}|= |\bruch{y+1}{(x+1)(y+1)}- \bruch{x+1}{(y+1)(x+1)}|= |\bruch{y-x}{(x+1)(y+1)}|\le [/mm] |y-x|= |x-y|


Lg Melisa

Bezug
                        
Bezug
Ungleichung: richtig erkannt
Status: (Antwort) fertig Status 
Datum: 18:24 Sa 23.10.2010
Autor: Loddar

Hallo Melisa!


> Meinst du das so:
>  
> [mm]|\bruch{1}{x+1}- \bruch{1}{y+1}|= |\bruch{y+1}{(x+1)(y+1)}- \bruch{x+1}{(y+1)(x+1)}|= |\bruch{y-x}{(x+1)(y+1)}|\le[/mm] |y-x|= |x-y|

[ok] Genau.

Ich würde noch einen Zwischenschritt mehr einfügen mit:

[mm]... \ = \ \left|\bruch{y-x}{(x+1)*(y+1)}\right| \ = \ \bruch{|y-x|}{|(x+1)*(y+1)|} \ \overset{\text{warum?}}{=} \ \bruch{|y-x|}{(x+1)*(y+1)} \ \le \ ...[/mm]


Gruß
Loddar



Bezug
                                
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:26 Sa 23.10.2010
Autor: melisa1

Ok super danke habs verstanden!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]