Uneigentliche Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 05:33 Do 15.01.2009 | Autor: | rororo18 |
Aufgabe | Existieren die folgenden uneigentlichen Integrale (i) [mm] \integral_{0}^{3}{\bruch{dx}{(x-2)^{2}} } [/mm] ?
Man berechne gegebenenfalls ihren Wert. |
zu (i)
Wie soll ich da genau vorgehen?
Die Funktion hat mit den Integralgrenzen keine Probleme, jedoch mit der 2. Soll ich jetzt das Integral aufspalten?
[mm] \integral_{0}^{2}{\bruch{dx}{(x-2)^{2}} } [/mm] + [mm] \integral_{2}^{3}{\bruch{dx}{(x-2)^{2}} }
[/mm]
Dann könnte man mit: [mm] \limes_{b\rightarrow2} \integral_{0}^{b}{\bruch{dx}{(x-2)^{2}} } [/mm] + [mm] \limes_{a\rightarrow2} \integral_{a}^{3}{\bruch{dx}{(x-2)^{2}} } [/mm] weitermachen.
//Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 06:44 Do 15.01.2009 | Autor: | fred97 |
> Existieren die folgenden uneigentlichen Integrale (i)
> [mm]\integral_{0}^{3}{\bruch{dx}{(x-2)^{2}} }[/mm] ?
> Man berechne gegebenenfalls ihren Wert.
> zu (i)
> Wie soll ich da genau vorgehen?
> Die Funktion hat mit den Integralgrenzen keine Probleme,
> jedoch mit der 2. Soll ich jetzt das Integral aufspalten?
> [mm]\integral_{0}^{2}{\bruch{dx}{(x-2)^{2}} }[/mm] +
> [mm]\integral_{2}^{3}{\bruch{dx}{(x-2)^{2}} }[/mm]
> Dann könnte man
> mit: [mm]\limes_{b\rightarrow2} \integral_{0}^{b}{\bruch{dx}{(x-2)^{2}} }[/mm]
> + [mm]\limes_{a\rightarrow2} \integral_{a}^{3}{\bruch{dx}{(x-2)^{2}} }[/mm]
> weitermachen.
Genau das mußt Du tun. Wenn beide Grenzwerte ex. ist das Integral konvergent. Anderenfalls nicht.
FRED
>
> //Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:38 Do 15.01.2009 | Autor: | rororo18 |
Aufgabe | [mm] \limes_{b\rightarrow2}[-\bruch{1}{x-2}] [/mm] + [mm] \limes_{a\rightarrow2}[-\bruch{1}{x-2}] [/mm] = [mm] \limes_{b\rightarrow2}(-\bruch{1}{b-2} [/mm] - [mm] \bruch{1}{2}) [/mm] + [mm] \limes_{a\rightarrow2}(-1 [/mm] + [mm] \bruch{1}{a-2})
[/mm]
Da [mm] \limes_{b\rightarrow2}(-\bruch{1}{b-2}) [/mm] und [mm] \limes_{a\rightarrow2}\bruch{1}{a-2} [/mm] nicht extieren, existiert der Grenzwert nicht und somit auch das uneigentliche Integral nicht. |
Ich hoffe ich habe es so richtig gelöst.
Eine Frage hätte ich da noch. Bisher hatte ich nur mit uneigentlichen Integralen zu tun gehabt, bei denen die Integralgrenzen Probleme gemacht haben.
Kann man nun generell sagen, wenn die Funktion in einem Punkt innerhalb des Integrals nicht definiert ist (wie in diesem Fall in der 2), so muss man das Integral aufspalten und dann wie oben fortfahren?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:56 Do 15.01.2009 | Autor: | fred97 |
> [mm]\limes_{b\rightarrow2}[-\bruch{1}{x-2}][/mm] +
> [mm]\limes_{a\rightarrow2}[-\bruch{1}{x-2}][/mm] =
> [mm]\limes_{b\rightarrow2}(-\bruch{1}{b-2}[/mm] - [mm]\bruch{1}{2})[/mm] +
> [mm]\limes_{a\rightarrow2}(-1[/mm] + [mm]\bruch{1}{a-2})[/mm]
> Da [mm]\limes_{b\rightarrow2}(-\bruch{1}{b-2})[/mm] und
> [mm]\limes_{a\rightarrow2}\bruch{1}{a-2}[/mm] nicht extieren,
> existiert der Grenzwert nicht und somit auch das
> uneigentliche Integral nicht.
> Ich hoffe ich habe es so richtig gelöst.
Das hast Du
> Eine Frage hätte ich da noch. Bisher hatte ich nur mit
> uneigentlichen Integralen zu tun gehabt, bei denen die
> Integralgrenzen Probleme gemacht haben.
> Kann man nun generell sagen, wenn die Funktion in einem
> Punkt innerhalb des Integrals nicht definiert ist (wie in
> diesem Fall in der 2), so muss man das Integral aufspalten
> und dann wie oben fortfahren?
Ja
FRED
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:05 Do 15.01.2009 | Autor: | rororo18 |
Alles klar. Danke für deine Hilfe fred97
|
|
|
|