www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Unabhängigkeit
Unabhängigkeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:22 Mi 17.10.2012
Autor: Salamence

Aufgabe
Seien [mm] \mathcal{E}_{i} [/mm] für $ i [mm] \in [/mm] I $ unabh., [mm] \cap [/mm] -stabile Teilsysteme eines W-Raumes [mm] (\Omega, \mathcal{A}, [/mm] P ), I sei disjunkte Vereinigung von Mengen [mm] I_{j} [/mm] für $ j [mm] \in [/mm] J $
Zeigen Sie, dass dann die von [mm] \bigcup_{i \in I_{j}} \mathcal{E}_{i} [/mm] erzeugten [mm] \sigma [/mm] -Algebren unabh. sind.

Hallo!

Ich weiß schon folgendes:
Sind [mm] \mathcal{U}_{j} [/mm] unabhängig und [mm] \cap [/mm] -stabil, so auch die von ihnen erzeugten [mm] \sigma [/mm] -Algebren.

Ich hab mir nun
[mm] \mathcal{U}_{j} [/mm] := [mm] \{ \bigcap_{k \in K} A_{k} | K \subset I_{j} \ endlich \ und \ A_{k} \in \mathcal{E}_{k}\} [/mm]
definiert und gezeigt, dass diese Systeme [mm] \cap [/mm] -stabil sind und die gleiche [mm] \sigma [/mm] - Algebra erzeugen, wie die Vereinigung der [mm] \mathcal{E}_{i} [/mm] für i aus [mm] I_{j} [/mm]
Was fehlt ist die Unabhängigkeit...und das krieg ich irgendwie nicht hin.
Sei dazu K [mm] \subset [/mm] J endlich und [mm] A_{k} [/mm] für k [mm] \in [/mm] K aus [mm] \mathcal{U}_{k}. [/mm] Dann gibt es zunächst [mm] L_{k} \subset I_{k} [/mm] und Mengen [mm] A^{k}_{l} \in \mathcal{E}_{l}, [/mm] sodass
[mm] A_{k} [/mm] = [mm] \bigcap_{l \in L_{k}} A^{k}_{l} [/mm]
Dann gilt:
P( [mm] \bigcap_{k} A_{k} [/mm] ) = P ( [mm] \bigcap_{k} \bigcap_{l \in L_{k}} A_{l}^{k} [/mm] ) = P ( [mm] \bigcap_{ l \in \bigcup_{k \in K} L_{k}} \bigcap_{k: l \in L_{k}} A_{l}^{k} [/mm] ) = [mm] \prod_{l \in \bigcup L_{k}} [/mm] P ( [mm] \bigcap_{k: l \in L_{k}} A_{l}^{k} [/mm] ) = ???
Rauskommen sollte jedenfalls
[mm] \prod_{ k \in K} [/mm] P [mm] (A_{k} [/mm] ) = [mm] \prod_{k \in K} [/mm] P ( [mm] \bigcap_{ l \in L_{k} } A_{l}^{k} [/mm] )
Ich sehe aber nicht, wie man das weiter umformen könnte, denn die Mengen [mm] A_{l}^{k} [/mm] für k mit  l [mm] \in L_{k} [/mm] liegen doch alle in [mm] \mathcal{E}_{l} [/mm]  und das ist nicht unabhängig von sich selbst...

        
Bezug
Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Do 18.10.2012
Autor: tobit09

Hallo Salamence,


dein Ansatz sieht doch schon einmal sehr gut aus! [ok]


>  Dann gilt:
>  P( [mm]\bigcap_{k} A_{k}[/mm] ) = P ( [mm]\bigcap_{k} \bigcap_{l \in L_{k}} A_{l}^{k}[/mm]
> ) = P ( [mm]\bigcap_{ l \in \bigcup_{k \in K} L_{k}} \bigcap_{k: l \in L_{k}} A_{l}^{k}[/mm]
> ) = [mm]\prod_{l \in \bigcup L_{k}}[/mm] P ( [mm]\bigcap_{k: l \in L_{k}} A_{l}^{k}[/mm]
> ) = ???

(Warum gilt die letzte Gleichheit?)

>  Rauskommen sollte jedenfalls
> [mm]\prod_{ k \in K}[/mm] P [mm](A_{k}[/mm] ) = [mm]\prod_{k \in K}[/mm] P ( [mm]\bigcap_{ l \in L_{k} } A_{l}^{k}[/mm]
> )
> Ich sehe aber nicht, wie man das weiter umformen könnte,
> denn die Mengen [mm]A_{l}^{k}[/mm] für k mit  l [mm]\in L_{k}[/mm] liegen
> doch alle in [mm]\mathcal{E}_{l}[/mm]  und das ist nicht unabhängig
> von sich selbst...

Von diesen vermeintlich vielen Mengen [mm]A_{l}^{k}[/mm] für k mit  l [mm]\in L_{k}[/mm] gibt es bei näherem Hinsehen nur eine! Genauer gesagt: Es gibt nur (genau) ein k mit [mm] $l\in L_k$ [/mm] (nennen wir es [mm] $k_l$), [/mm] d.h. es kann keine zwei verschiedenen [mm] $k,k'\in [/mm] K$ geben, so dass $l$ in beiden Mengen [mm] $L_k$ [/mm] und [mm] $L_{k'}$ [/mm] liegt. Denn sonst würde $l$ auch in [mm] $I_k$ [/mm] und [mm] $I_{k'}$ [/mm] liegen und wir hätten einen Widerspruch zur paarweisen Disjunktheit der [mm] $I_j$. [/mm]

In [mm] $\bigcap_{k: l \in L_{k}} A_{l}^{k}$ [/mm] wird also der Schnitt nur über ein $k$, nämlich [mm] $k=k_l$ [/mm] genommen. Also [mm] $\bigcap_{k: l \in L_{k}} A_{l}^{k}=A_l^{k_l}$. [/mm]

Kommst du damit alleine weiter?


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]