www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Umkehrregel
Umkehrregel < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 So 14.01.2007
Autor: confused

Aufgabe
(f hoch -1)' (y) = (f hoch -1) * (f(x)) = 1 / f'(x) oder (f hoch -1)'*(f(x))*f'(x)=1

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


HI,
also erstma sry komm mit den zeichen noch net so ganz klar ^^
also ich denke mir mal das man auf den zweiten schritt dort kommt indem man für y einfach f(x) einsetzt. wie aber kommt man dann auf das 1 / f'8x) und auf den ganzen rest danach?? und vorallem wie kann man sagen das da immer eins rauskommen soll, das is doch nicht möglich oder?

ich danke ecuh schonmal im voraus für jede bemühung ;)

        
Bezug
Umkehrregel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 So 14.01.2007
Autor: Walde

Hi confused,

nur noch mal zur Klärung: [mm] f^{-1} [/mm] ist (wenn denn eine existiert,davon gehen wir mal aus) die Umkehrfunktion von f. Es gilt also (falls f an der Stelle x und [mm] f^{-1} [/mm] an y=f(x) definiert sind, wovon wir auch ausgehen):

[mm] f^{-1}(f(x))=x [/mm]

Leite diese Gleichung auf beiden Seiten nach x ab (wir gehen wieder davon aus,dass die Ableitungen auch existieren), dann erhältst du (linke Seite mit Kettenregel):

[mm] $(f^{-1})'(f(x))\cdot [/mm] f'(x)=1 $ und damit, falls [mm] f'(x)\not=0 [/mm]

[mm] (f^{-1}(y))'=\bruch{1}{f'(x)} [/mm]

mit y=f(x)

alles klar? ;-)

LG walde

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]