Trigonometr. Formeln, Potenzen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Zeigen Sie: [mm] cos^{4} [/mm] (x) = [mm] \bruch{1}{8} [/mm] cos 4x + [mm] \bruch{1}{2} [/mm] cos 2x + [mm] \bruch{3}{8} [/mm] |
Ich soll diese Aufgabe lösen. Bloss komm da irgendwie nicht ganz weiter ...
Also ich verwende die Formel von Moivre: (cos x + i*sin [mm] x)^{4} [/mm] = cos 4x + i*sin 4x;
Danach habe ich die Binomische Formel genommen und das ebenfalls aufgelöst: (cos x + i*sin [mm] x)^{4} [/mm] = ... = ( [mm] cos^{4} [/mm] x - [mm] 6*cos^{2} [/mm] x [mm] sin^{2} [/mm] x + [mm] sin^{4} [/mm] x )+ i* (4cos³ x sin x - sin³ x 4 cos x) ! Also aufgelöst und nach realteil und Imaginärteil geordnet !
Nun vergleiche ich die beiden Realteile: cos (4x) = [mm] cos^{4} [/mm] x - [mm] 6*cos^{2} [/mm] x [mm] sin^{2} [/mm] x + [mm] sin^{4} [/mm] x ! Da ersetz ich dann das sin²x noch mit (1-cos²x). Und dann müsste doch da jetzt mein gewünschtes Ergebnis rauskommen , oder ?
Leider klappt das irgendwie nicht ! Bin ich hierbei total auf dem falschen weg, bzw. hab nurn Rechenfehler drin ? Oder was mach ich falsch ? Bitte um irgendwelche Hilfe und Unterstützung !
Vielen Dank und Grüße !
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:00 Mi 13.12.2006 | Autor: | Kampfhase |
Ah ja, gut ! Jetzt versteh ichs auch !
Danke nochmal !
|
|
|
|