Transponierte Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 21:42 Mi 14.01.2009 | Autor: | Lucy234 |
Aufgabe | Aufgabe 2:
a) Bestimmen Sie für [mm]x,y \varepsilon \IR^{n}[/mm] die Größe der Matrizen [mm]x^{t}y[/mm] und [mm]xy^{t}[/mm] und zeigen Sie [mm](xy^{t})^{2} = (y^{t}x)(xy^{t})[/mm] sowie [mm](x^{t}x = 0 \vee xx^{t} = 0) \gdw x = 0[/mm]
b) Zeigen Sie, dass für [mm]x, y \varepsilon \IR^{n}[/mm] die Matrix [mm]xy^{t}[/mm] genau dann symmetrisch ist, wenn x und y linear abhängig sind (Dabei heißt eine Matrix A symmetrisch, wenn [mm]A^{t} = A[/mm]). Zeigen Sie außerdem, dass [mm]Rang(x^{t}y) = 1[/mm] falls [mm]x,y \not= 0[/mm].
c) Formulieren Sie eine Bedingung an x und y, so dass [mm]I_{n} -xy^{t}[/mm] invertierbar ist. Bestimmen Sie dazu eine Zahl [mm] a \varepsilon \IR [/mm], so dass [mm](I_{n} - xy^{t})^{-1} = I_{n} + xy^{t}[/mm].
d) Es sei [mm]A \varepsilon M_{n,n}(\IR)[/mm] invertierbar. Zeigen Sie mit c), dass die inverse Matrix zu [mm]A − xy^{t}[/mm] existiert, wenn [mm]x^{t}A^{-1}y \not= 1[/mm]. Geben Sie die inverse Matrix in diesem Fall an. |
Hallo,
ich komme an einigen Stellen bei dieser Aufgabe nicht weiter.
Bei der a) hab ich einfach mal [mm]x=(x_{1} ... x_{n})[/mm] und [mm] y=(y_{1} ... y_{n})[/mm] gesetzt und die angebenen Produkte bestimmt. So konnte ich die Größe der Matrizen bestimmen und zeigen: [mm] x=0 \Rightarrow (x^{t}x=0 \gdw xx^{t}=0)[/mm]. Reicht das als Beweis? Ich fand es nämlich dann etwas unübersichtlich das Quadrat von [mm] (xy^{t})[/mm] auf diese Art zu bestimmen. Gibt es da eine bessere Vorgehensweise?
Bei der b) hatte ich Probleme aus der Symmetrie zu folgern, dass x und y l.a. sind. Die andere Richtung konnte ich zeigen.
Kann mir vielleicht jemand weiterhelfen?
Grüße, Lucy
|
|
|
|
> Aufgabe 2:
> a) Bestimmen Sie für [mm]x,y \varepsilon \IR^{n}[/mm] die Größe der
> Matrizen [mm]x^{t}y[/mm] und [mm]xy^{t}[/mm] und zeigen Sie [mm](xy^{t})^{2} = (y^{t}x)(xy^{t})[/mm]
> sowie [mm](x^{t}x = 0 \vee xx^{t} = 0) \gdw x = 0[/mm]
> b) Zeigen
> Sie, dass für [mm]x, y \varepsilon \IR^{n}[/mm] die Matrix [mm]xy^{t}[/mm]
> genau dann symmetrisch ist, wenn x und y linear abhängig
> sind (Dabei heißt eine Matrix A symmetrisch, wenn [mm]A^{t} = A[/mm]).
> Zeigen Sie außerdem, dass [mm]Rang(x^{t}y) = 1[/mm] falls [mm]x,y \not= 0[/mm].
>
> c) Formulieren Sie eine Bedingung an x und y, so dass [mm]I_{n} -xy^{t}[/mm]
> invertierbar ist. Bestimmen Sie dazu eine Zahl [mm]a \varepsilon \IR [/mm],
> so dass [mm](I_{n} - xy^{t})^{-1} = I_{n} + xy^{t}[/mm].
> d) Es sei
> [mm]A \varepsilon M_{n,n}(\IR)[/mm] invertierbar. Zeigen Sie mit c),
> dass die inverse Matrix zu [mm]A − xy^{t}[/mm] existiert, wenn
> [mm]x^{t}A^{-1}y \not= 1[/mm]. Geben Sie die inverse Matrix in
> diesem Fall an.
> Hallo,
> ich komme an einigen Stellen bei dieser Aufgabe nicht
> weiter.
> Bei der a) hab ich einfach mal [mm]x=(x_{1} ... x_{n})[/mm] und
> [mm]y=(y_{1} ... y_{n})[/mm] gesetzt und die angebenen Produkte
> bestimmt. So konnte ich die Größe der Matrizen bestimmen
> und zeigen: [mm]x=0 \Rightarrow (x^{t}x=0 \gdw xx^{t}=0)[/mm].
> Reicht das als Beweis?
Hallo,
können wir hellsehen?
Ich für meinen Teil werde mich jedenfalls hüten, hier ins Blaue hinein ja oder nein zu sagen. Dazu müßte man schonmal sehen, was Du gemacht hast.
Wenn Du alles richtig bedacht hast, ist's ein Beweis, klar.
> Ich fand es nämlich dann etwas
> unübersichtlich das Quadrat von [mm](xy^{t})[/mm] auf diese Art zu
> bestimmen. Gibt es da eine bessere Vorgehensweise?
> Bei der b) hatte ich Probleme aus der Symmetrie zu
> folgern, dass x und y l.a. sind. Die andere Richtung konnte
> ich zeigen.
Spontan würde ich einen Widerspruch versuchen, indem ich mit A symmetrisch und x und y linear unabhängig starte.
Gruß v. Angela
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:20 Fr 16.01.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|