Topologie eindeutig? < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:32 So 27.04.2008 | Autor: | Aurelie |
Aufgabe | Es sei X eine mene und [mm] (Y,\tau_{y}) [/mm] ein topologischer Raum. Ferner sei [mm] f:X\to [/mm] Y eine Abbildung. Finden sie eine bezüglich Mengeninklusion kleinste Topologie auf X, so dass f astetig wird. Ist diese Topologie eindeutig? |
Hallo Leute,
Die gesuchte kleinste Topologie hab ich mit [mm] \tau_{x}=\{f^{-1}(O)|O\in\tau_{y}\} [/mm] und dies auch bewiesen. Bei der Frage ob die eindeutig ist würde ich denken ja aber ich weiß nicht wie ich da argumentieren kann?
Gruß,
Christine
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:51 So 27.04.2008 | Autor: | Marcel |
Hallo Christine,
> Es sei X eine mene und [mm](Y,\tau_{y})[/mm] ein topologischer Raum.
> Ferner sei [mm]f:X\to[/mm] Y eine Abbildung. Finden sie eine
> bezüglich Mengeninklusion kleinste Topologie auf X, so dass
> f astetig wird. Ist diese Topologie eindeutig?
> Hallo Leute,
> Die gesuchte kleinste Topologie hab ich mit
> [mm]\tau_{x}=\{f^{-1}(O)|O\in\tau_{y}\}[/mm] und dies auch bewiesen.
> Bei der Frage ob die eindeutig ist würde ich denken ja aber
> ich weiß nicht wie ich da argumentieren kann?
es gibt prinzipiell zwei Möglichkeiten:
1.) Sei [mm] $\mathbb{M}:=\{T: T \mbox{ ist Topologie auf }X \mbox{ so, dass obige Abbildung }f \mbox{ stetig ist}\}$.
[/mm]
Zeige:
[mm] $\tau_{x}=\bigcap_{T \in \mathbb{M}}T$
[/mm]
Warum folgt damit auch schon die Eindeutigkeit von [mm] $\tau_{x}$?
[/mm]
2.) (Wobei diese Variante eigentlich sehr eng mit 1.) verbunden ist):
Nimm' an, es gäbe eine weitere kleinste Topologie auf $X$ so, dass $f: X [mm] \to [/mm] Y$ stetig wird. Nennen wir diese mal [mm] $T\,'$. [/mm]
Angenommen, es wäre [mm] $T\,' \not= \tau_{x}$. [/mm] Betrachten wir nun mal die neue Topologie [mm] $T_{\mbox{neu}}:=T\,' \cap \tau_{x}$. [/mm] Ich behaupte:
Dann ist [mm] $T_{\mbox{neu}}$ [/mm] eine weitere Topologie, so, dass $f: X [mm] \to [/mm] Y$ stetig ist. Aber [mm] $T_{\mbox{neu}}$ [/mm] ist echt kleiner als [mm] $T\,'$ [/mm] und auch echt kleiner als [mm] $\tau_{x}$, [/mm] weil...? Das ist ein Widerspruch zu...?
P.S.:
Zur Erinnerung:
Der Schnitt zweier Topologien ist wieder eine Topologie.
(Bzw. bei 1.) sollte man sogar besser die Aussage: "Der Schnitt beliebig vieler Topologien ist wieder eine Topologie." benutzen.)
Was Du noch beweisen solltest:
Sind [mm] $T_1$, $T_2 \in \mathbb{M}$, [/mm] so ist [mm] $(T_1 \cap T_2) \in \mathbb{M}$. [/mm] D.h., dass der Schnitt zweier Topologien, bzgl. denen [mm] $\black{f}$ [/mm] stetig ist, auch wieder eine Topologie ist, so dass [mm] $\black{f}$ [/mm] stetig ist.
(Bzw. bei 1.): "Der Schnitt beliebig vieler Topologien, bzgl. denen [mm] $\black{f}$ [/mm] stetig ist, ergibt wieder eine Topologie bzgl. der [mm] $\black{f}$ [/mm] stetig ist.")
Gruß,
Marcel
|
|
|
|