Teilraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:34 Mo 12.03.2012 | Autor: | yangwar1 |
Aufgabe | Kriterium für Teilraum
Eine Teilmenge U eines K-Vektorraumes V ist genau dann ein Teilvektorraum von V, wenn U nicht leere Menge ist und :
1) x, y aus U => x+y aus U
2) c aus K, x aus U => cx aus U |
1.
Ich habe eine Frage zu dem Beweis eines Teilraumes:
=>In einem Lehrbuch steht, dass dann natürlich die beiden Bedingungen 1) und 2) gelten. Für mich ist das leider nicht so klar. Die Teilmenge U ist als ein Teilraum, es gelten also alle Vektorraumeaxiome wie x+(y+z) = (x+y)+z mit x,y,z aus dem Vektorraum U. usw.
Wenn ich nun davon ausgehe, dass U ein Teilvektorraum ist, und x,y aus U ist, woher weiß ich dann aber, dass 1) gilt, dass die Addition also abgeschlossen ist.
<=Die Rückrichtung: Nach 2) liegt mit jedem x aus U auch -x=-(1x)=(-1)x in U. Außerdem nach 1) gibt es auch das additiv inverse zu jedem a aus U.
Hier verstehe ich dann nicht, warum dann zum Beispiel die Gleichheit x+y=y+x gilt. Das ist ja auch ein Kriterium für einen Vektorraum, was nachgewiesen werden muss.
2. Die Teilmenge M = [mm] \vektor{2 \\ a} [/mm] von [mm] \IR^2 [/mm] ist kein Teilvektorraum von [mm] \IR^2.
[/mm]
Nach obigem Kriterium müssen die drei Eigenschaften gelten:
1)U nicht leere Menge.
[mm] 2)\vektor{2 \\ a} [/mm] + [mm] \vektor{2 \\ a} [/mm] = [mm] \vektor{4 \\ 2a}
[/mm]
Da jedes Element der Menge von der Form [mm] \vektor{2 \\ a} [/mm] sein muss, ist dies kein Teilvektorraum. (Also wegen der 4 nicht?)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:41 Mo 12.03.2012 | Autor: | fred97 |
> Kriterium für Teilraum
> Eine Teilmenge U eines K-Vektorraumes V ist genau dann ein
> Teilvektorraum von V, wenn U nicht leere Menge ist und :
> 1) x, y aus U => x+y aus U
> 2) c aus K, x aus U => cx aus U
> 1.
> Ich habe eine Frage zu dem Beweis eines Teilraumes:
> =>In einem Lehrbuch steht, dass dann natürlich die beiden
> Bedingungen 1) und 2) gelten. Für mich ist das leider
> nicht so klar. Die Teilmenge U ist als ein Teilraum, es
> gelten also alle Vektorraumeaxiome wie x+(y+z) = (x+y)+z
> mit x,y,z aus dem Vektorraum U. usw.
> Wenn ich nun davon ausgehe, dass U ein Teilvektorraum ist,
> und x,y aus U ist, woher weiß ich dann aber, dass 1) gilt,
> dass die Addition also abgeschlossen ist.
Das folgt aus der Def. des Begriffs " Teilvektorraum":
Ein Teilvektorraum ist eine Teilmenge eines Vektorraums, die selbst wieder ein Vektorraum über demselben Körper ist. Dabei werden die Vektorraumoperationen auf den Teilvektorraum vererbt.
>
> <=Die Rückrichtung: Nach 2) liegt mit jedem x aus U auch
> -x=-(1x)=(-1)x in U. Außerdem nach 1) gibt es auch das
> additiv inverse zu jedem a aus U.
> Hier verstehe ich dann nicht, warum dann zum Beispiel die
> Gleichheit x+y=y+x gilt.
x und y sind doch Elemente des Raumes V, also gilt x+y=y+x
> Das ist ja auch ein Kriterium für
> einen Vektorraum, was nachgewiesen werden muss.
>
> 2. Die Teilmenge M = [mm]\vektor{2 \\ a}[/mm] von [mm]\IR^2[/mm] ist kein
> Teilvektorraum von [mm]\IR^2.[/mm]
> Nach obigem Kriterium müssen die drei Eigenschaften
> gelten:
> 1)U nicht leere Menge.
> [mm]2)\vektor{2 \\ a}[/mm] + [mm]\vektor{2 \\ a}[/mm] = [mm]\vektor{4 \\ 2a}[/mm]
> Da
> jedes Element der Menge von der Form [mm]\vektor{2 \\ a}[/mm] sein
> muss, ist dies kein Teilvektorraum. (Also wegen der 4
> nicht?)
Ja
FRED
>
>
|
|
|
|