Taylorentwicklung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:09 Mo 14.04.2008 | Autor: | rastaman |
Aufgabe | Entwickeln Sie jeweils die Funktion g(h,k) = f(h+k,y+k) nach Potenzen von h und k (zumindest bis zu den kubischen Termen).
f(x,y) = x² + y² + xy - 6x - 4y +5 |
Hallo bin neu hier im Forum
In der Lösung steht:
f(x+h,y+k) = f(x,y) + (2x+y-6)h + (2y+x-4)k + [mm] h^2 [/mm] + hk + [mm] k^2
[/mm]
Was genau mache ich mit der Taylorentwicklung hier?
Da gibt es ja so eine schöne Formel für 2 unabhängige Variablen (möchte ich jetzt nicht eintippen)
Um auf dieses Ergebnis zu kommen, hätte ich jetzt einfach alle x durch (x+h) und alle y durch (y+k) ersetzt und umgeformt.
Aber wo bleibt der Taylor? Wo die Entwicklung?
Noch dazu gibt ja der Tyalor das Verhalten der Funktion in der Nähe eines Punktes an, oder?
Nein warte, das ist die Tangentialebene.
Was ist der Taylor dann?
Ich bin verwirrt.
Bitte um Hilfe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo rastaman,
> Entwickeln Sie jeweils die Funktion g(h,k) = f(h+k,y+k)
> nach Potenzen von h und k (zumindest bis zu den kubischen
> Termen).
>
> f(x,y) = x² + y² + xy - 6x - 4y +5
> Hallo bin neu hier im Forum
>
> In der Lösung steht:
> f(x+h,y+k) = f(x,y) + (2x+y-6)h + (2y+x-4)k + [mm]h^2[/mm] + hk +
> [mm]k^2[/mm]
>
> Was genau mache ich mit der Taylorentwicklung hier?
> Da gibt es ja so eine schöne Formel für 2 unabhängige
> Variablen (möchte ich jetzt nicht eintippen)
[mm]f\left(x+h, \ y+k\right)=\summe_{n=0}^{\infty}\summe_{i=0}^{n}\bruch{1}{i! \ \left(n-i\right)!}* \bruch{\partial \ f^{n}}{\partial x^{i} \partial y ^{n-i}} |_{\left(x,y\right)}*h^{i}*k^{n-i}[/mm]
>
> Um auf dieses Ergebnis zu kommen, hätte ich jetzt einfach
> alle x durch (x+h) und alle y durch (y+k) ersetzt und
> umgeformt.
Genau.
> Aber wo bleibt der Taylor? Wo die Entwicklung?
In der Aufgabenstellung steht nichts von Taylor.
Das Taylorpoloynom kannst ja mal spasseshalber ausrechnen.
>
> Noch dazu gibt ja der Tyalor das Verhalten der Funktion in
> der Nähe eines Punktes an, oder?
> Nein warte, das ist die Tangentialebene.
> Was ist der Taylor dann?
Die Tangentialebene wird aus dem Taylorpolynom 1. Grades aufgebaut.
> Ich bin verwirrt.
>
> Bitte um Hilfe
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Gruß
MathePower
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:02 Di 15.04.2008 | Autor: | rastaman |
Danke
Dachte wenn da "Entwickeln Sie" steht, daß da gleich der Taylor gemeint, ist.
Diese abstrakte Mathematik ist nichts für mich.
Jetzt sind wir grade bei der Poisson Gleichung.
Also bei der Herleitung der Lösung, pffff.... echt kein Plan was da abgeht.
Hoffentlich klappts bei der Anwendung, wenn nicht weiß ich ja wo ich mich melden muss.
MFG
|
|
|
|