www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Taylor Reihe
Taylor Reihe < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:24 Mi 11.01.2006
Autor: Magnia

Wieso funktioniert die TaylorReihe nicht bei der ermittlung von tanx ?

f(x)        = tanx                         =0      (x=0)
f`(x)     = [mm] 1+(tanx)^2 [/mm]               =1
f``(x)   = [mm] 2+2*(tanx)^2 [/mm]           =2
f```(x)  = [mm] 4+4(tanx)^2 [/mm]            =4

t(x)= [mm] x+x^2+2/3x^3+1/3x^4+2/15x^5 [/mm]

tan(0,5)=0,54
t(0,5)=0,8

Wieso funktioniert das hier nicht?
Danke

        
Bezug
Taylor Reihe: Ableitungen falsch bestimmt
Status: (Antwort) fertig Status 
Datum: 14:36 Mi 11.01.2006
Autor: Roadrunner

Hallo Magnia!


Du hast ab der 2. Ableitung einen Fehler in der Ableitungsberechnung. Du musst hier doch mit der MBKettenregel arbeiten:

$f'(x) \ = \ [mm] 1+\tan^2(x)$ [/mm]  [ok]

$f''(x) \ = \ [mm] 0+\underbrace{2*\tan^1(x)}_{\text{ äußere Abl.}} [/mm] \ * \ [mm] \underbrace{[1+\tan^2(x)]}_{\text{innere Abl.}} [/mm] \ = \ [mm] 2*\tan(x)+2*\tan^3(x)$ [/mm]


Und genauso bei den nächsten Ableitungen verfahren ...


Gruß vom
Roadrunner


Bezug
        
Bezug
Taylor Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 So 31.12.2006
Autor: black2407

wie würde die weitere Ableitung aussehen?
2*(tan^2x + 1) + 6(tan^2x * (tan^2x +1)

zusammengefasst:

8 [mm] (tan^2)x+6(tan^4)x [/mm] + 2


??

Bezug
                
Bezug
Taylor Reihe: Richtig!
Status: (Antwort) fertig Status 
Datum: 15:57 So 31.12.2006
Autor: Roadrunner

Hallo black!


[daumenhoch] Genau richtig!


Gruß vom
Roadrunner


Bezug
                
Bezug
Taylor Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:26 So 31.12.2006
Autor: black2407

die 4.ableitung wäre somit:

16*tanx + [mm] 24(tan^5)x [/mm] + [mm] 40(tan^3)x [/mm] ???

Bezug
                        
Bezug
Taylor Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 So 31.12.2006
Autor: nsche


> die 4.ableitung wäre somit:
>  
> 16*tanx + [mm]24(tan^5)x[/mm] + [mm]40(tan^3)x[/mm] ???

ja, das hab ich auch raus

vG
Norbert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]