www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Tangente anlegen
Tangente anlegen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente anlegen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 Mo 19.01.2015
Autor: Hannahgraeter

Hallo,

ich bin mir nicht ganz sicher ob ich die Aufgabe richtig gelöst habe, denn wenn ich mein Ergebniss in mein GTR in EQUA modus eingebe kommt kein Ergebniss raus. Die Aufgabe lautet:

Gegeben ist die Funktio f mit f(x)= [mm] x^2+1 [/mm]
Bestimmen Sie die Gleichung der Tangente an das Schaubild K von f im Punkt B(u/f(u))
Für welche Wahl von u ER verläuft diese Tangente durch den Ursprung

1. Habe ich f(x) abgeleitet

f'(x)= 2x

2. den Punkt P(0/0) in f'(x) eingesetzt

f'(u)= 2*u

3. Danach habe ich f(u) = [mm] u^2 [/mm] +1 und f'(u) mit dem Punkt P in die PSF eingesetzt

0= 2* u (x - u ) + [mm] u^2 [/mm] + 1

0= 2 * u ( 0 - u ) + [mm] u^2 [/mm] +1

0= [mm] 2u^2 +u^2 [/mm] +1

0= [mm] 3u^2 [/mm] +1



4. Dann hab ich im EQUA Modus bei Poly -> 2 für a-> 3  b-> 0 und c-> 1 eingegebn, an der Stelle komme ich nicht weiter :(


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
Schulminator.com

        
Bezug
Tangente anlegen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 Mo 19.01.2015
Autor: meili

Hallo,

> Hallo,
>  
> ich bin mir nicht ganz sicher ob ich die Aufgabe richtig
> gelöst habe, denn wenn ich mein Ergebniss in mein GTR in
> EQUA modus eingebe kommt kein Ergebniss raus. Die Aufgabe
> lautet:
>  
> Gegeben ist die Funktio f mit f(x)= [mm]x^2+1[/mm]
>  Bestimmen Sie die Gleichung der Tangente an das Schaubild
> K von f im Punkt B(u/f(u))
>  Für welche Wahl von u ER verläuft diese Tangente durch
> den Ursprung
>  
> 1. Habe ich f(x) abgeleitet
>
> f'(x)= 2x
>  
> 2. den Punkt P(0/0) in f'(x) eingesetzt
>  
> f'(u)= 2*u
>  
> 3. Danach habe ich f(u) = [mm]u^2[/mm] +1 und f'(u) mit dem Punkt P
> in die PSF eingesetzt
>
> 0= 2* u (x - u ) + [mm]u^2[/mm] + 1
>  
> 0= 2 * u ( 0 - u ) + [mm]u^2[/mm] +1

[ok]

>  
> 0= [mm]2u^2 +u^2[/mm] +1

[notok]
Gibt: $0 = [mm] -2u^2+u^2+1$ [/mm]

>  
> 0= [mm]3u^2[/mm] +1

$0 = [mm] -u^2 [/mm] +1$

>
>
>
> 4. Dann hab ich im EQUA Modus bei Poly -> 2 für a-> 3  b->
> 0 und c-> 1 eingegebn, an der Stelle komme ich nicht weiter
> :(
>  
>
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  Schulminator.com

Gruß
meili

Bezug
                
Bezug
Tangente anlegen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:24 Mo 19.01.2015
Autor: Hannahgraeter

Super, danke :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]