Symmetr. Gruppe, Permutationen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] n\in\IN [/mm] und [mm] S_n [/mm] die symmetrische Gruppe. Sei (G, [mm] \cdot) [/mm] eine abelsche Gruppe und [mm] s:S_n \rightarrow [/mm] G eine surjektive Abbildung mit der Eigenschaft:
[mm] \forall \alpha,\beta\in S_n [/mm] : [mm] s(\alpha\beta) [/mm] = [mm] s(\alpha)\cdot s(\beta).
[/mm]
Man zeige: |G| [mm] \leq [/mm] 2 . |
Hallo liebes Forum,
ich tüfftle an o.g. Aufgabe schon eine ganze Weile herum, aber die richtige Idee fehlt mir noch. Mein bisheriger Ansatz ist folgender:
Es gilt n! = [mm] |S_n| [/mm] (Beweis z.B. durch Induktion) und |Bild(s)| = |G| (weil s surjektiv ist). Also insgesamt:
n! = [mm] |S_n| [/mm] = |Def(s)| [mm] \geq [/mm] |Bild(s)| = |G|.
Damit haben wir schonmal, daß G endlich ist.
Nun war meine Idee, die Endlichkeit von G zum Widerspruch zu führen, indem ich |G| > 2 annehme.
Also angenommen, |G| > 2. Dann existieren [mm] \alpha,\beta,\gamma\in S_n [/mm] , so daß [mm] s(\alpha), s(\beta), s(\gamma) [/mm] paarweise verschieden sind. (*)
Zu zeigen ist nun, daß G nicht endlich ist, also: Für alle n [mm] \geq [/mm] 3 existieren [mm] \gamma_1, \ldots, \gamma_n\in S_n [/mm] mit [mm] s(\gamma_1), \ldots, s(\gamma_n) [/mm] pw. verschieden.
I.A.: n = 3 : Klar wegen (*).
I.V.: Sei n > 3 so, daß [mm] \gamma_1, \ldots, \gamma_n\in S_n [/mm] ex. mit [mm] s(\gamma_1), \ldots, s(\gamma_n) [/mm] pw. verschieden.
I.S.: Und hier fehlt mir die zündende Idee, ein [mm] \gamma_{n+1} [/mm] zu basteln, so dass sich [mm] s(\gamma_{n+1}) [/mm] von [mm] s(\gamma_1), \ldots, s(\gamma_n) [/mm] unterscheidet. [mm] \gamma_{n+1} [/mm] := [mm] \gamma_1\ldots\gamma_n [/mm] klappt leider nicht ...
Mittlerweile glaube ich, mit diesem Ansatz nicht weiterzukommen ...
Kann mir jemand helfen?
Vielen lieben Dank für eine Hilfe
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:07 Di 11.03.2008 | Autor: | felixf |
Hallo
> Sei [mm]n\in\IN[/mm] und [mm]S_n[/mm] die symmetrische Gruppe. Sei (G, [mm]\cdot)[/mm]
> eine abelsche Gruppe und [mm]s:S_n \rightarrow[/mm] G eine
> surjektive Abbildung mit der Eigenschaft:
>
> [mm]\forall \alpha,\beta\in S_n[/mm] : [mm]s(\alpha\beta)[/mm] =
> [mm]s(\alpha)\cdot s(\beta).[/mm]
>
> Man zeige: |G| [mm]\leq[/mm] 2 .
Hier ist es wichtig zu wissen, was du schon ueber Gruppen weisst. Hattet ihr den Satz von Lagrange? Homomorphiesatz? Weisst du, was eine Kommutatoruntergruppe ist?
Da du das ganze im Lineare-Algebra-Forum postest, vermute ich dass du das alles noch nicht hattest. Insofern wirst du vermutlich nicht verstehen, wie ich auf die Beweisidee gekommen bin :)
Also: die grundlegende Idee ist, Aussagen ueber die Groesse vom Kern von $s$ zu machen. Mit Lagrange und dem Homomorphiesatz gilt naemlich $|G| [mm] \cdot |\ker [/mm] s| = [mm] |S_n|$. [/mm] Wenn also [mm] $|\ker [/mm] s|$ mindestens [mm] $\frac{n!}{2}$ [/mm] Elemente umfasst, gilt $|G| [mm] \le [/mm] 2$. (Wenn du Lagrange und den Homomorhpiesatz nicht hattest, musst du das in diesem Fall praktisch von Hand beweisen...)
Aber nun zu [mm] $\ker [/mm] s$. Die Idee ist zu zeigen, dass [mm] $A_n$ [/mm] in [mm] $\ker [/mm] s$ enthalten ist, oder anders gesagt, dass die Kommutatoruntergruppe [mm] $[S_n [/mm] : [mm] S_n]$ [/mm] in [mm] $\ker [/mm] s$ enthalten ist. Das ist die kleinste Untergruppe von [mm] $S_n$, [/mm] die alle Elemente der Form $x y [mm] x^{-1} y^{-1}$ [/mm] enthaelt, $x, y [mm] \in S_n$. [/mm] Da $G$ kommutativ ist muessen diese Elemente im Kern von [mm] $\varphi$ [/mm] liegen.
Jetzt musst du dir ueberlegen, dass du jedes Element in [mm] $A_n$ [/mm] als Produkt von Elementen der Form $x y [mm] x^{-1} y^{-1}$ [/mm] schreiben kannst. Dazu musst du was ueber die Zerlegung von Elementen in [mm] $S_n$ [/mm] in das Produkt von Transpositionen bzw. von Dreierzyklen wissen (ich glaub es waren Dreierzykel, bin mir aber nicht mehr sicher).
Hoffentlich hilft dir das ein wenig weiter...
LG Felix
|
|
|
|