www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Summenwert Reihe
Summenwert Reihe < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summenwert Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 Do 18.10.2007
Autor: Martinius

Hallo,

hat zufällig jemand den Summenwert folgender Reihe zur Hand? Ich komm' nicht drauf.

[mm]1*2 + 2*3 + 3*4 + 4*5 + 5*6 +...+ n(n+1)[/mm] = ?

Vielen Dank im voraus.

LG, Martinius

        
Bezug
Summenwert Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Do 18.10.2007
Autor: angela.h.b.


> hat zufällig jemand den Summenwert folgender Reihe zur
> Hand? Ich komm' nicht drauf.
>  
> [mm]1*2 + 2*3 + 3*4 + 4*5 + 5*6 +...+ n(n+1)[/mm] = ?

Hallo,

"zur Hand" hab' ich den Reihenwert nicht, aber es ist doch

1*2 + 2*3 + 3*4 + 4*5 + 5*6 +...+ n(n+1)

[mm] =1^2+1+2^2+2+3^2+3+...+n^2+n [/mm]

= zwei endl. Reihen, die Du sicher zur Hand hast.

Gruß v. Angela

Bezug
        
Bezug
Summenwert Reihe: Polynom 3. Grades
Status: (Antwort) fertig Status 
Datum: 21:33 Do 18.10.2007
Autor: Loddar

Hallo Martinius!


Wenn man sich die ersten Summenglieder aufschrreibt, stellt man fest, dass es sich um eine arithmetische Folge 3. Ordnung handet: also um ein Polynom 3. Grades.

Ich habe erhalten:   [mm] $\summe_{k=1}^{n}k*(k+1) [/mm] \ = \ [mm] \bruch{n^3+3*n^2+2*n}{3}\ [/mm] = \ [mm] \bruch{n*(n+1)*(n+2)}{3}$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Summenwert Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:01 Do 18.10.2007
Autor: schachuzipus

Hi Loddar,

ich glaube, du hast vergessen, die $6$ bei dem $6n$ im Zähler gegen die $3$ zu kürzen bzw. vergessen, es aufzuschreiben ;-)

Es ist $ [mm] \summe_{k=1}^{n}k\cdot{}(k+1) [/mm] \ = \ [mm] \bruch{n^3+3\cdot{}n^2+\red{2}\cdot{}n}{3} [/mm] $


Lieben Gruß

schachuzipus

Bezug
                        
Bezug
Summenwert Reihe: korrigiert
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:06 Do 18.10.2007
Autor: Loddar

Hallo Schachuzipus!


Danke für's Aufpassen! Daher schreibe ich dann auch "ohne Gewähr" ;-) .
Oben ist es nunmehr korrigiert.

Gruß
Loddar


Bezug
                
Bezug
Summenwert Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:03 Do 18.10.2007
Autor: Martinius

Hallo Angela, hallo Loddar,

vielen Dank für eure Antworten.

Es ist $ [mm] \summe_{k=1}^{n}k\cdot{}(k+1) [/mm] \ = \ [mm] \bruch{n^3+3\cdot{}n^2+2\cdot{}n}{3} [/mm] $

LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]