www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Summe irrationaler Zahlen
Summe irrationaler Zahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe irrationaler Zahlen: Ist mein Beweis falsch?
Status: (Frage) beantwortet Status 
Datum: 00:48 Do 24.11.2016
Autor: asg

Aufgabe
Seien $a, b, c [mm] \in \IR \setminus \IQ$. [/mm] Zeigen Sie:
$(a + b) [mm] \lor [/mm] (b + c) [mm] \lor [/mm] (c + a)$ ist irrational.

Hallo zusammen,

hier ist mein Beweis durch Widerspruch:

Angenommen $a+b, b+c, c+a [mm] \in \IQ \Rightarrow [/mm] a+b = [mm] \frac{p}{q}, [/mm] b+c = [mm] \frac{r}{s}, [/mm] c+a = [mm] \frac{t}{u}$ [/mm] mit $p,r,t [mm] \in \IZ$ [/mm] und $q, s, u [mm] \in \IZ \setminus \{0\}$ [/mm]

$(b+c) - (c+a) = b-c$

Da $a+b, c+a [mm] \in \IQ$ [/mm] angenommen, gilt $b-c [mm] \in \IQ$, [/mm] denn die Summe zweier rationaler Zahlen ist wieder eine rationale Zahl.

Sei $b-c = [mm] \frac{v}{w}$ [/mm] mit $v [mm] \in \IZ, [/mm] w [mm] \in \IZ \setminus \{0\}$ [/mm]

$b = [mm] \frac{(b+c)+(b-c)}{2} [/mm] = [mm] \frac{\frac{r}{s}+\frac{v}{w}}{2}=\frac{\frac{w*r + s*v}{s*w}}{2} [/mm] = [mm] \frac{w*r+s*v}{2*s*w}$ [/mm]

Da $w*r+s*v [mm] \in \IZ, [/mm] 2*s*w [mm] \in \IZ \setminus \{0\} \Rightarrow \frac{w*r+s*v}{2*s*w} \in \IQ \Rightarrow [/mm] b [mm] \in \IQ$ [/mm] Das ist ein Widerspruch.
Denn nach Voraussetzung gilt $b [mm] \in \IR \setminus \IQ$ [/mm]

$c = [mm] \frac{(b+c)-(b-c)}{2} [/mm] = [mm] \frac{\frac{r}{s}-\frac{v}{w}}{2}=\frac{\frac{w*r - s*v}{s*w}}{2} [/mm] = [mm] \frac{w*r-s*v}{2*s*w}$ [/mm]

Da $w*r-s*v [mm] \in \IZ, [/mm] 2*s*w [mm] \in \IZ \setminus \{0\} \Rightarrow \frac{w*r-s*v}{2*s*w} \in \IQ \Rightarrow [/mm] c [mm] \in \IQ$ [/mm] Das ist ein Widerspruch.
Denn nach Voraussetzung gilt $c [mm] \in \IR \setminus \IQ$ [/mm]

Also muss $b+c$ oder $b-c$ irrational sein.
Da $b-c = (a+b)-(c+a)$, muss $a+b$ oder $c+a$ irrational sein, falls $b+c$ rational ist, denn dann wäre $b-c$ irrational.
q.e.d.

Kann mir bitte jemand meine Fehler im Beweis aufzeigen?

Dankeschön für jede Hilfe.

Liebe Grüße

Asg


        
Bezug
Summe irrationaler Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:22 Do 24.11.2016
Autor: sinnlos123


Bezug
        
Bezug
Summe irrationaler Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:20 Do 24.11.2016
Autor: fred97


> Seien [mm]a, b, c \in \IR \setminus \IQ[/mm]. Zeigen Sie:
>  [mm](a + b) \lor (b + c) \lor (c + a)[/mm] ist irrational.
>  Hallo zusammen,
>  
> hier ist mein Beweis durch Widerspruch:
>  
> Angenommen [mm]a+b, b+c, c+a \in \IQ \Rightarrow a+b = \frac{p}{q}, b+c = \frac{r}{s}, c+a = \frac{t}{u}[/mm]
> mit [mm]p,r,t \in \IZ[/mm] und [mm]q, s, u \in \IZ \setminus \{0\}[/mm]
>  
> [mm](b+c) - (c+a) = b-c[/mm]

Das stimmt aber nicht ! Es ist

[mm](b+c) - (c+a) = b-a[/mm]

Jetzt haben wir: $a+b, b-a [mm] \in \IQ$. [/mm] Damit auch

  $2b=a+b+(b-a) [mm] \in \IQ$, [/mm] also $b [mm] \in \IQ$, [/mm] Wid !


FRED


>  
> Da [mm]a+b, c+a \in \IQ[/mm] angenommen, gilt [mm]b-c \in \IQ[/mm], denn die
> Summe zweier rationaler Zahlen ist wieder eine rationale
> Zahl.
>  
> Sei [mm]b-c = \frac{v}{w}[/mm] mit [mm]v \in \IZ, w \in \IZ \setminus \{0\}[/mm]
>  
> [mm]b = \frac{(b+c)+(b-c)}{2} = \frac{\frac{r}{s}+\frac{v}{w}}{2}=\frac{\frac{w*r + s*v}{s*w}}{2} = \frac{w*r+s*v}{2*s*w}[/mm]
>  
> Da [mm]w*r+s*v \in \IZ, 2*s*w \in \IZ \setminus \{0\} \Rightarrow \frac{w*r+s*v}{2*s*w} \in \IQ \Rightarrow b \in \IQ[/mm]
> Das ist ein Widerspruch.
>  Denn nach Voraussetzung gilt [mm]b \in \IR \setminus \IQ[/mm]
>  
> [mm]c = \frac{(b+c)-(b-c)}{2} = \frac{\frac{r}{s}-\frac{v}{w}}{2}=\frac{\frac{w*r - s*v}{s*w}}{2} = \frac{w*r-s*v}{2*s*w}[/mm]
>  
> Da [mm]w*r-s*v \in \IZ, 2*s*w \in \IZ \setminus \{0\} \Rightarrow \frac{w*r-s*v}{2*s*w} \in \IQ \Rightarrow c \in \IQ[/mm]
> Das ist ein Widerspruch.
>  Denn nach Voraussetzung gilt [mm]c \in \IR \setminus \IQ[/mm]
>  
> Also muss [mm]b+c[/mm] oder [mm]b-c[/mm] irrational sein.
>  Da [mm]b-c = (a+b)-(c+a)[/mm], muss [mm]a+b[/mm] oder [mm]c+a[/mm] irrational sein,
> falls [mm]b+c[/mm] rational ist, denn dann wäre [mm]b-c[/mm] irrational.
>  q.e.d.
>  
> Kann mir bitte jemand meine Fehler im Beweis aufzeigen?
>  
> Dankeschön für jede Hilfe.
>  
> Liebe Grüße
>  
> Asg
>  


Bezug
                
Bezug
Summe irrationaler Zahlen: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:53 Do 01.12.2016
Autor: asg

Hallo,

Dankeschön für die schnelle Hilfe.

>  >  
> > [mm](b+c) - (c+a) = b-c[/mm]
>  
> Das stimmt aber nicht ! Es ist
>  
> [mm](b+c) - (c+a) = b-a[/mm]
>  

Ja, da habe ich wohl bei der Eingabe nicht aufgepasst. Ich meinte eigentlich:
[mm](a+b) - (c+a) = b-c[/mm]

Viele Grüße

Asg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]