www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit einer Funktion
Stetigkeit einer Funktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit einer Funktion: Idee
Status: (Frage) beantwortet Status 
Datum: 15:06 So 27.03.2011
Autor: Tsetsefliege

Aufgabe
Sei [mm] f:\mathds{R}->\mathds{R} [/mm] differenzierbar. f habe Periode [mm] 2\pi, [/mm] d.h. [mm] f(x+2\pi)=f(x) [/mm] für jedes x [mm] \in\mathds{R} [/mm] . Sei

[mm] g(t):=\begin{cases} \bruch{f(x+t)-f(x)}{2*sin(\bruch{t}{2})}, & t\not\in 2\pi\mathds{Z} \\ f'(x)(-1)^{k}, & (t=2\pi k,k\in\mathds{Z}) \end{cases} [/mm]

Zeige, dass g überall stetig ist, insbesondere ist also g stetig auf [mm] [-\pi,+\pi] [/mm] und g(0)=f'(x)

Ich habe mir das folgendermaßen überlegt; Das g(0)=f'(x) ist einfach, ich muss für t nur [mm] 2\pi*k [/mm] einsetzen, und k=t=0 setzen. Daraus sollte man dann doch irgendwie den allgemeinen Fall ableiten können, nur habe ich keine Idee dazu.

        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 So 27.03.2011
Autor: ullim

Hi,

damit g(t) steig in [mm] 2\pi{k} [/mm] ist muss der Grenzwert von

[mm] \bruch{f(x+t)-f(x)}{2\cdot{}sin(\bruch{t}{2})} [/mm] für t-> [mm] 2\pi{k} [/mm] berechnet werden und überprüft werden ob er mit [mm] f'(x)(-1)^k [/mm] übereinstimmt.

Auf den obigen Ausdruck kan man l'Hospital anwenden und dann den Grenzwert berechnen. Also

[mm] \limes_{t\rightarrow{2\pi{k}}}\bruch{f'(x+t)}{cos\left(\bruch{t}{2}\right)}=\bruch{f'(x+2\pi{k})}{(-1)^k} [/mm]

Da [mm] f'(x+2\pi{k})=f'(x) [/mm] gilt, folgt

[mm] \limes_{t\rightarrow{2\pi{k}}}\bruch{f'(x+t)}{cos\left(\bruch{t}{2}\right)}=f'(x)*(-1)^k [/mm]

für k=0 folgt dann auch noch g(0)=f'(x)

Bezug
                
Bezug
Stetigkeit einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:30 So 27.03.2011
Autor: Tsetsefliege

Vielen Dank.

Bezug
                        
Bezug
Stetigkeit einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:37 So 27.03.2011
Autor: ullim

Hi,

das [mm] f'(x+2\pi{k})=f'(x) [/mm] gilt ist aber noch zu beweisen.

Bezug
                                
Bezug
Stetigkeit einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 So 27.03.2011
Autor: Tsetsefliege

Ja, aber das folgt ja aus der Voraussetzung [mm] f(x+2\pi)=f(x), 2\pi [/mm] gibt abgeleitet immer 0, daher [mm] f'(x+2\pi)=f(x), [/mm] oder?

Bezug
                                        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 So 27.03.2011
Autor: ullim

Hi,

[mm] f'(x+2\pi{k})=\limes_{h\rightarrow{0}}\bruch{f(x+2\pi{k}+h)-f(x+2\pi{k})}{h}=\limes_{h\rightarrow{0}}\bruch{f(x+h)-f(x)}{h}=f'(x) [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]