www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Stetigkeit einer Funktion
Stetigkeit einer Funktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:39 Do 01.12.2005
Autor: JeanLuc

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi,

also die Aufgabe ist zu bestimmen wann die Funktion f(x):= [mm] \limes_{n\rightarrow\infty} \bruch{x^{2n-1}+ax^2+bx}{x^{2n}+1} [/mm]

stetig ist.

Ich habe also zuerst mal versucht den Limes auszurechnen um so direkt auf f(x) zu kommen, bin aber gescheitert. Habe die x^(2n) umgestellt nach 2n^(ln(x)) aber auch das hat nicht zum Erfolg geführt.
Jetzt ist die Frage ob ich den Grenzwert überhaupt zuerst ausrechnen muss.

Habe mit überlegt, dass eine Funktion stetig ist, wenn ein Grenzwert L  mit x -> x0 existiert und f(L) = x0 ist

Ich weiß, das ganze ist was knapp, aber auch nur darum weil ich schon den ganzen abend versuche das ding zu lösen

thx

        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:29 Fr 02.12.2005
Autor: Leopold_Gast

Ich denke, du sollst schon den Grenzwert berechnen. Unterscheide die folgenden Fälle:

Fall 1
[mm]|x|<1, \ \ \ \lim_{n \to \infty} x^{2n-1} = \lim_{n \to \infty} x^{2n} = 0[/mm]

Fall 2
[mm]x = 1, \ \ \ 1^{2n-1} = 1^{2n} = 1[/mm]

Fall 3
[mm]x = -1, \ \ \ (-1)^{2n-1} = -1 \, , \ (-1)^{2n} = 1[/mm]

Fall 4
[mm]|x|>1, \ \ \ \lim_{n \to \infty} \frac{x^{2n-1}}{x^{2n} +1} = \frac{1}{x}[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]