www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit
Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 Sa 14.09.2013
Autor: bubblesXD

Aufgabe
Bestimmen Sie alle [mm] k\in\IR, [/mm] sodass die Funktion [mm] f:(-\bruch{1}{2},\infty)\to\IR [/mm] stetig ist, und begründen Sie ihre Antwort:

[mm] f(x)=\begin{cases}\bruch{x*cos(x)}{ln(2x+1)} , & x\not=0 \\ k, & x=0 \end{cases} [/mm]

Hallo,

mein Ansatz war es zuerst den Grenzwert zu bilden:

[mm] \limes_{n\rightarrow 0} [/mm] = [mm] \bruch{x*cos(x)}{ln(2x+1)}\overbrace{=}^{L'Hopital}\bruch{cos(x)-sin(x)*x}{\bruch{2}{2x+1}}= \bruch{1}{2} [/mm]

und damit die Funktion stetig ist muss doch jetzt gelten [mm] \limes_{n\rightarrow 0} [/mm] k = [mm] \bruch{1}{2}, [/mm] oder?

Vielen Dank im Voraus.
LG Bubbles

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Sa 14.09.2013
Autor: Diophant

Hallo,

vorneweg: im Prinzip ist das alles richtig, was du da machst, aber es ist - verzeih bitte - katatstrophal notiert.

> Bestimmen Sie alle [mm]k\in\IR,[/mm] sodass die Funktion
> [mm]f:(-\bruch{1}{2},\infty)\to\IR[/mm] stetig ist, und begründen
> Sie ihre Antwort:

>

> [mm]f(x)=\begin{cases}\bruch{x*cos(x)}{ln(2x+1)} , & x\not=0 \\ k, & x=0 \end{cases}[/mm]

>

> Hallo,

>

> mein Ansatz war es zuerst den Grenzwert zu bilden:

>

> [mm]\limes_{n\rightarrow 0}[/mm] =
> [mm]\bruch{x*cos(x)}{ln(2x+1)}\overbrace{=}^{L'Hopital}\bruch{cos(x)-sin(x)*x}{\bruch{2}{2x+1}}= \bruch{1}{2}[/mm]

>

Was soll das mit dem n? Was soll ein Gleichheitszeichen direkt hinter dem Limes-Symbol? Weshalb taucht nach dem zweiten Gleichheitszeichen das Limes-Sysmbol nicht mehr auf, obwohl der Grenzwert noch gar nicht ausgewertet ist?

> und damit die Funktion stetig ist muss doch jetzt gelten
> [mm]\limes_{n\rightarrow 0}[/mm] k = [mm]\bruch{1}{2},[/mm] oder?

>

Nein, es ist

[mm] \lim_{x\rightarrow{0}}f(x)= \frac{1}{2} [/mm]

und zwar beidseitig. Da beisst die Maus keinen Faden ab, und man benötigt keinen Konjunktiv.

Wenn also k=1/2 ist, dann wird die zunächst auf [mm] D\backslash\left \{ 0 \right \} [/mm] definierte Funktion f* an der Stelle x=0 durch f(0)=k=1/2 stetig fortgesetzt.

Weshalb die Funktion überall sonst stetig ist, kann man ja auch noch begründen...

Gruß, Diophant
 

Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 Sa 14.09.2013
Autor: bubblesXD

Danke:)

Ich hab die Fehler jetzt noch mal verbessert:

[mm] \limes_{x\rightarrow 0} \bruch{x\cdot{}cos(x)}{ln(2x+1)}\overbrace{=}^{L'Hopital}\limes_{x\rightarrow 0}\bruch{cos(x)-sin(x)\cdot{}x}{\bruch{2}{2x+1}}= \bruch{1}{2} [/mm]

[mm] \lim_{x\rightarrow{0}}f(x)= \frac{1}{2} [/mm]

Und dann gilt:

[mm] f(x)=\begin{cases}\bruch{x\cdot{}cos(x)}{ln(2x+1)} , & x\not=0 \\ \bruch{1}{2}, & x=0 \end{cases} [/mm]

Muss ich noch was machen, oder bin ich jetzt fertig mit der Aufgabe?

LG Bubbles

Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Sa 14.09.2013
Autor: fred97


> Danke:)
>  
> Ich hab die Fehler jetzt noch mal verbessert:
>  
> [mm]\limes_{x\rightarrow 0} \bruch{x\cdot{}cos(x)}{ln(2x+1)}\overbrace{=}^{L'Hopital}\limes_{x\rightarrow 0}\bruch{cos(x)-sin(x)\cdot{}x}{\bruch{2}{2x+1}}= \bruch{1}{2}[/mm]
>
> [mm]\lim_{x\rightarrow{0}}f(x)= \frac{1}{2}[/mm]
>
> Und dann gilt:


Wie meinst Du das ????


Wir hatten:



$ [mm] f(x)=\begin{cases}\bruch{x\cdot{}cos(x)}{ln(2x+1)} , & x\not=0 \\ k, & x=0 \end{cases} [/mm] $


Ich würde schreiben: f ist stetig [mm] \gdw [/mm] k=1/2.

FRED

>  
> [mm]f(x)=\begin{cases}\bruch{x\cdot{}cos(x)}{ln(2x+1)} , & x\not=0 \\ \bruch{1}{2}, & x=0 \end{cases}[/mm]
>
> Muss ich noch was machen, oder bin ich jetzt fertig mit der
> Aufgabe?
>  
> LG Bubbles


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]