Stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:18 Sa 06.08.2005 | Autor: | Bastiane |
Hallo!
Ich bräuchte mal einen Tipp, wie ich folgende Aussage beweisen kann:
Man zeige, dass die Funktion [mm] f:\IR\to\IR, f(x)=\begin{cases} 0, & \mbox{falls } x \mbox{ rational} \\ 1, & \mbox{falls } x \mbox{ irrational} \end{cases} [/mm] in keinem Punkt stetig ist.
Und zwar ist bisher nur folgende Definition der Stetigkeit bekannt: Die Funktion f heißt stetig im Punkt a, falls [mm] \lim_{x\to a}f(x)=f(a).
[/mm]
Viele Grüße
Bastiane
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:44 Sa 06.08.2005 | Autor: | Nam |
Hallo Bastiane,
die Definition von Stetigkeit ist eigentlich die sog. Epsilon-Delta Definition:
f ist stetig an der Stelle [mm]x_0[/mm] [mm]\gdw[/mm]
für jedes [mm]\varepsilon > 0[/mm] existiert ein [mm]\delta > 0[/mm] so dass für alle x mit [mm]|x-x_0| < \delta[/mm] auch gilt: [mm]|f(x) - f(x_0)| < \varepsilon[/mm].
siehe auch Wikipedia (oder beliebiges Ana-Buch): http://de.wikipedia.org/wiki/Stetigkeit
Nun gibt es noch die Folgenstetigkeit, die ist äquivalent zur Stetigkeit. Die Folgenstetigkeit ist das, was du oben gepostet hast. Häufig ist es einfacher, damit zu arbeiten, als mit der Epsilon-Delta Definition.
An deinem Beispiel vorgemacht.
Wir widerlegen zuerst die Stetigkeit in allen irrationalen Punkten:
Sei also [mm]x_0 \in \IR \setminus \IQ[/mm], also [mm]f(x_0) = 1[/mm]. Sei [mm](x_n)_n[/mm] eine rationale Folge, die gegen [mm]x_0[/mm] konvergiert - d.h. wir nähern den irrationalen Punkt durch eine Folge von rationalen Punkten an. So eine Folge gibt es immer. Also: [mm]\forall \; n \in \IN: x_n \in \IR[/mm] und [mm]\limes_{n\rightarrow\infty}{x_n} = x_0[/mm] und natürlich auch [mm]f(x_n) = 0 \;\;\;\; \forall \; n \in \IN[/mm]
[mm]\Rightarrow \limes_{n\rightarrow\infty}{f(x_n)} = \limes_{n\rightarrow\infty}{0} = 0 \not=1 = f(x_0)[/mm]
Damit haben wir gezeigt, dass [mm]\limes_{x \to x_0}{f(x)} \not= f(x_0)[/mm] - also ist die Funktion f in [mm]\IR \setminus \IQ[/mm] unstetig.
Jetzt noch die Unstetigkeit in allen rationalen Punkten:
Sei also [mm]x_0 \in \IQ[/mm], d.h. [mm]f(x_0) = 0[/mm]. Definiere [mm]x_n := x_0 + \frac{\sqrt{2}}{n}[/mm]. Dann ist [mm]x_n \in \IR \setminus \IQ \;\;\; \forall \; n \in \IN[/mm] und ausserdem gilt [mm]\limes_{n\rightarrow\infty}{x_n} = x_0[/mm].
Nun ist aber [mm]f(x_n) = 1[/mm] und damit ist [mm]\limes_{n\rightarrow\infty}{f(x_n)} = \limes_{n\rightarrow\infty}{1} = 1 \not= 0 = f(x_0)[/mm]. Also ist [mm]\limes_{x \to x_0}{f(x)} \not= f(x_0)[/mm] und die Funktion ist auch unstetig auf [mm]\IQ[/mm].
PS: für was büffelst du denn so sehr?
|
|
|
|