www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetig und inj f: R^2 nach R ?
Stetig und inj f: R^2 nach R ? < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetig und inj f: R^2 nach R ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:12 Di 20.07.2010
Autor: Riesenradfahrrad

Hallo!

ich frage mich gerade, ob eine Abbildung [mm] $f:\mathbb R^2\rightarrow \mathbb [/mm] R$ (oder allgemeiner [mm] $f:\mathbb R^m \rightarrow\mathbb R^n$ [/mm] mit $m>n$)  möglich ist, die stetig UND injektiv ist.
Ich vermute nein, kann es aber mathematisch nicht in knapper Form begründen.

Freue mich sehr über Antworten!

Gruß,
Lorenz

        
Bezug
Stetig und inj f: R^2 nach R ?: Antwort
Status: (Antwort) fertig Status 
Datum: 08:15 Mi 21.07.2010
Autor: cycore

Guten Morgen,

> ich frage mich gerade, ob eine Abbildung [mm]f:\mathbb R^2\rightarrow \mathbb R[/mm]
> (oder allgemeiner [mm]f:\mathbb R^m \rightarrow\mathbb R^n[/mm] mit
> [mm]m>n[/mm])  möglich ist, die stetig UND injektiv ist.
>  Ich vermute nein, kann es aber mathematisch nicht in
> knapper Form begründen.
>  

Es tut mir leid dir das mitteilen zu müssen, aber die gibt es wohl (sogar zw. [mm] \IR^m [/mm] und [mm] \IR^n), [/mm] also ich persönlich kenne kein beispiel, aber mein topologie-prof. hat gesagt es gibt dazwischen sogar stetige bijektionen!

Was wir aber mit sicherheit sagen können (dank Brouwer) ist, dass die Umkehrabbildung dann nicht stetig ist, denn dann wäre die abbildung homöomorph und die Dimension ist glücklicherweise invariant!

aber ich lasse das hier mal als kommentar, vielleicht kennt ja sogar jemand ein beispiel (bzw. kannst ja mal selbst recherchieren, spezialfall Space-filling curves)

LG cycore

Bezug
        
Bezug
Stetig und inj f: R^2 nach R ?: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Mi 21.07.2010
Autor: fred97

Es gilt folgender SATZ (L.E.J. Brouwer, Math. Ann. 70 , 1911, 161-165):

Wird eine Umgebung U von a [mm] \in \IR^p [/mm] stetig und injektiv auf eine Umgebung V von b [mm] \in \IR^q [/mm] abgebildet, so ist p=q.


FRED

Bezug
                
Bezug
Stetig und inj f: R^2 nach R ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Mi 21.07.2010
Autor: Riesenradfahrrad

Hallo Fred,

danke für die Antwort! Hab versucht den Ausschnitt zu finden (unter Invarianz der Dimensionzahl), war allerdings net so erfolgreich. Deshalb noch zwei "Sicherheitsfragen" :

1) Stimmt es also, dass es keine stetige, injektive Abbildung von [mm] $\mathbb R^2$ [/mm] nach [mm] $\mathbb [/mm] R$ gibt?

2) Ist denn die stetige Abbildung [mm] $f:\mathbb R^2\rightarrow \mathbb R^3,\quad [/mm] f(x,y)=(x,y,0)$ etwa nicht injektiv (mit [mm] $2=p\neq [/mm] q=3$)  und damit im Widerspruch zum Satz von Brouwer?

Herzlichen Gruß,
Lorenz

Bezug
                        
Bezug
Stetig und inj f: R^2 nach R ?: Antwort
Status: (Antwort) fertig Status 
Datum: 04:42 Do 22.07.2010
Autor: angela.h.b.


> Hallo Fred,
>  
> danke für die Antwort! Hab versucht den Ausschnitt zu
> finden (unter Invarianz der Dimensionzahl), war allerdings
> net so erfolgreich. Deshalb noch zwei "Sicherheitsfragen"
> :

Hallo,

beachte bitte  meine Mitteilung.

>  
> 1) Stimmt es also, dass es keine stetige, injektive
> Abbildung von [mm]\mathbb R^2[/mm] nach [mm]\mathbb R[/mm] gibt?

Ja, das würde ich aus dem Satz folgern - allerdings widerspricht das, dem, was cycorers Professor sagt...

>  
> 2) Ist denn die stetige Abbildung [mm]f:\mathbb R^2\rightarrow \mathbb R^3,\quad f(x,y)=(x,y,0)[/mm]
> etwa nicht injektiv

Natürlich ist die Abbildung injektiv.

> (mit [mm]2=p\neq q=3[/mm])  und damit im
> Widerspruch zum Satz von Brouwer?

Zu der von mir angemerkten "Variante" des Satzes gibt's keinen Widerspruch.

Gruß v. Angela


Bezug
                        
Bezug
Stetig und inj f: R^2 nach R ?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Do 22.07.2010
Autor: fred97


> Hallo Fred,
>  
> danke für die Antwort! Hab versucht den Ausschnitt zu
> finden (unter Invarianz der Dimensionzahl), war allerdings
> net so erfolgreich. Deshalb noch zwei "Sicherheitsfragen"
> :
>  
> 1) Stimmt es also, dass es keine stetige, injektive
> Abbildung von [mm]\mathbb R^2[/mm] nach [mm]\mathbb R[/mm] gibt?
>  
> 2) Ist denn die stetige Abbildung [mm]f:\mathbb R^2\rightarrow \mathbb R^3,\quad f(x,y)=(x,y,0)[/mm]
> etwa nicht injektiv (mit [mm]2=p\neq q=3[/mm])  und damit im
> Widerspruch zum Satz von Brouwer?

Nein. Beachte das Wörtchen "auf" in:

         "Wird eine Umgebung U von a $ [mm] \in \IR^p [/mm] $ stetig und injektiv auf eine Umgebung V von b $ [mm] \in \IR^q [/mm] $ abgebildet, so ist p=q. "


FRED

>  
> Herzlichen Gruß,
>  Lorenz


Bezug
                
Bezug
Stetig und inj f: R^2 nach R ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:30 Do 22.07.2010
Autor: angela.h.b.


> Es gilt folgender SATZ (L.E.J. Brouwer, Math. Ann. 70 ,
> 1911, 161-165):
>  
> Wird eine Umgebung U von a [mm]\in \IR^p[/mm] stetig und injektiv
> auf eine Umgebung V von b [mm]\in \IR^q[/mm] abgebildet, so ist
> p=q.

Hallo,

hier muß es heißen "..., so ist [mm] p\le [/mm] q", oder?

p=q folgt dann, wenn die Abbildung ein Homöomorphismus ist.

Gruß v. Angela


>  
>
> FRED


Bezug
                        
Bezug
Stetig und inj f: R^2 nach R ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:06 Do 22.07.2010
Autor: fred97


> > Es gilt folgender SATZ (L.E.J. Brouwer, Math. Ann. 70 ,
> > 1911, 161-165):
>  >  
> > Wird eine Umgebung U von a [mm]\in \IR^p[/mm] stetig und injektiv
> > auf eine Umgebung V von b [mm]\in \IR^q[/mm] abgebildet, so ist
> > p=q.
>  
> Hallo,
>  
> hier muß es heißen "..., so ist [mm]p\le[/mm] q", oder?

Den obigen Satz habe ich schon richtig zitiert: p=q. Beachte : oben steht: ...." auf eine Umgebung V", also f(U)=V.

FRED

>  
> p=q folgt dann, wenn die Abbildung ein Homöomorphismus
> ist.
>  
> Gruß v. Angela
>  
>
> >  

> >
> > FRED
>  


Bezug
                                
Bezug
Stetig und inj f: R^2 nach R ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:00 Do 22.07.2010
Autor: angela.h.b.


> Den obigen Satz habe ich schon richtig zitiert: p=q.
> Beachte : oben steht: ...." auf eine Umgebung V", also
> f(U)=V.

Achso.
Meine Augen haben das sicher gesehen - aber den Weg ins Gehirn hat es nicht gefunden.

Ich hatte meine Weisheit hierher:

http://books.google.de/books?id=j17HeLOnGFsC&pg=PA46&lpg=PA46&dq=%22Brouwer%22+injektiv+stetig&source=bl&ots=Y5QgCR_IUK&sig=Q5ObMPz1x7VC2ZhGH07T_mLLiPQ&hl=de&ei=_6hHTL6lK-rY4waZ6ajZCQ&sa=X&oi=book_result&ct=result&resnum=1&ved=0CBYQ6AEwAA#v=onepage&q=%22Brouwer%22%20injektiv%20stetig&f=false

Jetzt sehe ich den Unterschied.

Danke!
Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]