Steitgkeit m Punkt x_0 < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:09 Do 03.01.2008 | Autor: | matt57 |
Aufgabe | [mm] f(x)=\begin{cases} xsin \bruch{1}{x}, & \mbox{für } x \mbox{ ungleich 0 } \\ 0, & \mbox{für } x \mbox{= 0} \end{cases} [/mm] |
Hallo!
In der Aufgabe steht auch, dass z.B. [mm] sin^2 [/mm] x+ [mm] cos^2 [/mm] x =1 usw. für spezielle Argumente verwendet werden können.
Mir ist jedoch nicht klar, wie ich damit an die Aufgabe herangehen soll.
Habe hier im Forum folgendes gefunden - geht das so?:
Da -1 [mm] \le sin\bruch{1}{x} \le [/mm] 1 ist, gilt für x > 0 die Ungleichung -x [mm] \le sin\bruch{1}{x} \le [/mm] x.
Hieraus ergibt sich nach Anwendung des Vergleichs- und Einschatelungssatzes
aufgrund der Stetigkeit der Funktiont g(x) = x an der Stelle 0 für den rechtsseitigen Grenzwert [mm] \limes_{n\rightarrow 0,n>0}(x sin(\bruch{1}{x}) [/mm] = 0.
Analog erhält man für x < 0 den Linksseitigen Grenzwert [mm] \limes_{n\rightarrow 0,n < 0}(x sin(\bruch{1}{x}) [/mm] = 0.
Da rechts- und linksseitiger Grenzwert übereinstimmen
und außerdem f(0) = 0 ist, gilt [mm] \limes_{n\rightarrow 0} [/mm] f(x)=0=f(0).
f ist also an der Stelle x0 = 0 stetig.
Zur Aufgabenstellung:
Benötigt man den zweiten Fall f(x)=0, für x=0 nur, da die Div. durch 0 nicht definiert ist?
Danke und Grüße
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:08 Do 03.01.2008 | Autor: | miamias |
Also mit der Definition im Punkt 0 hast du recht. Diese muss man machen, da du sonst durch 0 teilen würdest.
Also zu deiner Aussage mit -x [mm] \le sin(1/x)\le [/mm] x. Diese ist falsch. Setz mal x =0,1: sin10 [mm] \not\in [/mm] [-0,1;0,1].
So wenndu jetzt weiter überlegen möchtest lies nicht weiter, da ich dir jetzt meinen Lösungsvorschlag aufzeige.
Ich würde das Ganze folgendermaßen machen:
a:= min{ [mm] sin(1/x),x\in \IR [/mm] }=-1 und b:= max{ [mm] sin(1/x),x\in \IR [/mm] }=1
[mm] \limes_{x\rightarrow\ 0}xa \le \limes_{x\rightarrow\ 0}xsin(1/x) \le \limes_{x\rightarrow\ 0}xb, [/mm]
da [mm] \limes_{x\rightarrow\ 0}xa [/mm] = [mm] \limes_{x\rightarrow\ 0}xb [/mm] = 0, da, [mm] \limes_{x\rightarrow\ 0} [/mm] x = 0 muss auch [mm] \limes_{x\rightarrow\ 0}xsin(1/x) [/mm] = 0
Das Ganze funktioniert sowohl mit dem rechtsseitigen wie auch mit dem linksseitigen limes.
Ich hoffe ich konnte dir etwas helfen.
mfg
miamias
|
|
|
|